Optimal. Leaf size=23 \[ \frac {x^2}{1-e^{e^2 \left (-\frac {3}{25}+x\right )^2}} \]
________________________________________________________________________________________
Rubi [F] time = 1.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {50 x+e^{\frac {1}{625} e^2 \left (9-150 x+625 x^2\right )} \left (-50 x+e^2 \left (-6 x^2+50 x^3\right )\right )}{25-50 e^{\frac {1}{625} e^2 \left (9-150 x+625 x^2\right )}+25 e^{\frac {2}{625} e^2 \left (9-150 x+625 x^2\right )}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 x+e^{\frac {1}{625} e^2 \left (9-150 x+625 x^2\right )} \left (-50 x+e^2 \left (-6 x^2+50 x^3\right )\right )}{25 \left (1-e^{\frac {1}{625} e^2 (3-25 x)^2}\right )^2} \, dx\\ &=\frac {1}{25} \int \frac {50 x+e^{\frac {1}{625} e^2 \left (9-150 x+625 x^2\right )} \left (-50 x+e^2 \left (-6 x^2+50 x^3\right )\right )}{\left (1-e^{\frac {1}{625} e^2 (3-25 x)^2}\right )^2} \, dx\\ &=\frac {1}{25} \int \left (\frac {2 e^2 x^2 (-3+25 x)}{\left (-1+e^{\frac {1}{625} e^2 (3-25 x)^2}\right )^2}+\frac {2 x \left (-25-3 e^2 x+25 e^2 x^2\right )}{-1+e^{\frac {1}{625} e^2 (3-25 x)^2}}\right ) \, dx\\ &=\frac {2}{25} \int \frac {x \left (-25-3 e^2 x+25 e^2 x^2\right )}{-1+e^{\frac {1}{625} e^2 (3-25 x)^2}} \, dx+\frac {1}{25} \left (2 e^2\right ) \int \frac {x^2 (-3+25 x)}{\left (-1+e^{\frac {1}{625} e^2 (3-25 x)^2}\right )^2} \, dx\\ &=\frac {2}{25} \int \left (-\frac {25 x}{-1+e^{\frac {1}{625} e^2 (3-25 x)^2}}-\frac {3 e^2 x^2}{-1+e^{\frac {1}{625} e^2 (3-25 x)^2}}+\frac {25 e^2 x^3}{-1+e^{\frac {1}{625} e^2 (3-25 x)^2}}\right ) \, dx+\frac {1}{25} \left (2 e^2\right ) \int \left (-\frac {3 x^2}{\left (-1+e^{\frac {1}{625} e^2 (3-25 x)^2}\right )^2}+\frac {25 x^3}{\left (-1+e^{\frac {1}{625} e^2 (3-25 x)^2}\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {x}{-1+e^{\frac {1}{625} e^2 (3-25 x)^2}} \, dx\right )-\frac {1}{25} \left (6 e^2\right ) \int \frac {x^2}{\left (-1+e^{\frac {1}{625} e^2 (3-25 x)^2}\right )^2} \, dx-\frac {1}{25} \left (6 e^2\right ) \int \frac {x^2}{-1+e^{\frac {1}{625} e^2 (3-25 x)^2}} \, dx+\left (2 e^2\right ) \int \frac {x^3}{\left (-1+e^{\frac {1}{625} e^2 (3-25 x)^2}\right )^2} \, dx+\left (2 e^2\right ) \int \frac {x^3}{-1+e^{\frac {1}{625} e^2 (3-25 x)^2}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 25, normalized size = 1.09 \begin {gather*} -\frac {x^2}{-1+e^{\frac {1}{625} e^2 (3-25 x)^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 24, normalized size = 1.04 \begin {gather*} -\frac {x^{2}}{e^{\left (\frac {1}{625} \, {\left (625 \, x^{2} - 150 \, x + 9\right )} e^{2}\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left ({\left (25 \, x^{3} - 3 \, x^{2}\right )} e^{2} - 25 \, x\right )} e^{\left (\frac {1}{625} \, {\left (625 \, x^{2} - 150 \, x + 9\right )} e^{2}\right )} + 25 \, x\right )}}{25 \, {\left (e^{\left (\frac {2}{625} \, {\left (625 \, x^{2} - 150 \, x + 9\right )} e^{2}\right )} - 2 \, e^{\left (\frac {1}{625} \, {\left (625 \, x^{2} - 150 \, x + 9\right )} e^{2}\right )} + 1\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 22, normalized size = 0.96
method | result | size |
risch | \(-\frac {x^{2}}{{\mathrm e}^{\frac {\left (25 x -3\right )^{2} {\mathrm e}^{2}}{625}}-1}\) | \(22\) |
norman | \(-\frac {x^{2}}{{\mathrm e}^{\frac {\left (625 x^{2}-150 x +9\right ) {\mathrm e}^{2}}{625}}-1}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 34, normalized size = 1.48 \begin {gather*} -\frac {x^{2} e^{\left (\frac {6}{25} \, x e^{2}\right )}}{e^{\left (x^{2} e^{2} + \frac {9}{625} \, e^{2}\right )} - e^{\left (\frac {6}{25} \, x e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.73, size = 28, normalized size = 1.22 \begin {gather*} -\frac {x^2}{{\mathrm {e}}^{x^2\,{\mathrm {e}}^2}\,{\mathrm {e}}^{\frac {9\,{\mathrm {e}}^2}{625}}\,{\mathrm {e}}^{-\frac {6\,x\,{\mathrm {e}}^2}{25}}-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 22, normalized size = 0.96 \begin {gather*} - \frac {x^{2}}{e^{\left (x^{2} - \frac {6 x}{25} + \frac {9}{625}\right ) e^{2}} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________