3.40.9 \(\int \frac {200 x^2+80 x^3+(-50 x^3-20 x^4) \log (x)+(-400 x-160 x^2+(100 x^2+40 x^3) \log (x)) \log (x^2)+(200+80 x+(-50 x-20 x^2) \log (x)) \log ^2(x^2)+(\frac {4-x \log (x)}{x})^{\frac {x}{-2 x+2 \log (x^2)}} (-100 x-85 x^2-5 x^3+10 x^3 \log (x)+(100+125 x+5 x^2-20 x^2 \log (x)) \log (x^2)+(-40+10 x \log (x)) \log ^2(x^2)+(200+40 x+(-50 x-10 x^2) \log (x)+(-100-20 x+(25 x+5 x^2) \log (x)) \log (x^2)) \log (\frac {4-x \log (x)}{x}))}{-8 x^2+2 x^3 \log (x)+(16 x-4 x^2 \log (x)) \log (x^2)+(-8+2 x \log (x)) \log ^2(x^2)} \, dx\)

Optimal. Leaf size=35 \[ 5 (5+x) \left (-x+\left (\frac {4}{x}-\log (x)\right )^{\frac {x}{2 \left (-x+\log \left (x^2\right )\right )}}\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 34.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {200 x^2+80 x^3+\left (-50 x^3-20 x^4\right ) \log (x)+\left (-400 x-160 x^2+\left (100 x^2+40 x^3\right ) \log (x)\right ) \log \left (x^2\right )+\left (200+80 x+\left (-50 x-20 x^2\right ) \log (x)\right ) \log ^2\left (x^2\right )+\left (\frac {4-x \log (x)}{x}\right )^{\frac {x}{-2 x+2 \log \left (x^2\right )}} \left (-100 x-85 x^2-5 x^3+10 x^3 \log (x)+\left (100+125 x+5 x^2-20 x^2 \log (x)\right ) \log \left (x^2\right )+(-40+10 x \log (x)) \log ^2\left (x^2\right )+\left (200+40 x+\left (-50 x-10 x^2\right ) \log (x)+\left (-100-20 x+\left (25 x+5 x^2\right ) \log (x)\right ) \log \left (x^2\right )\right ) \log \left (\frac {4-x \log (x)}{x}\right )\right )}{-8 x^2+2 x^3 \log (x)+\left (16 x-4 x^2 \log (x)\right ) \log \left (x^2\right )+(-8+2 x \log (x)) \log ^2\left (x^2\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(200*x^2 + 80*x^3 + (-50*x^3 - 20*x^4)*Log[x] + (-400*x - 160*x^2 + (100*x^2 + 40*x^3)*Log[x])*Log[x^2] +
(200 + 80*x + (-50*x - 20*x^2)*Log[x])*Log[x^2]^2 + ((4 - x*Log[x])/x)^(x/(-2*x + 2*Log[x^2]))*(-100*x - 85*x^
2 - 5*x^3 + 10*x^3*Log[x] + (100 + 125*x + 5*x^2 - 20*x^2*Log[x])*Log[x^2] + (-40 + 10*x*Log[x])*Log[x^2]^2 +
(200 + 40*x + (-50*x - 10*x^2)*Log[x] + (-100 - 20*x + (25*x + 5*x^2)*Log[x])*Log[x^2])*Log[(4 - x*Log[x])/x])
)/(-8*x^2 + 2*x^3*Log[x] + (16*x - 4*x^2*Log[x])*Log[x^2] + (-8 + 2*x*Log[x])*Log[x^2]^2),x]

[Out]

-25*x - 5*x^2 + 5*Defer[Int][(4/x - Log[x])^(-1/2*x/(x - Log[x^2])), x] + 25*Defer[Int][x^2/(x - Log[x^2])^2,
x] + 10*Defer[Int][x^3/(x - Log[x^2])^2, x] + 100*Defer[Int][x^2/((-4 + x*Log[x])*(x - Log[x^2])^2), x] + 40*D
efer[Int][x^3/((-4 + x*Log[x])*(x - Log[x^2])^2), x] - 25*Defer[Int][(x^3*Log[x])/((-4 + x*Log[x])*(x - Log[x^
2])^2), x] - 10*Defer[Int][(x^4*Log[x])/((-4 + x*Log[x])*(x - Log[x^2])^2), x] - 50*Defer[Int][1/((4/x - Log[x
])^(x/(2*(x - Log[x^2])))*(-4 + x*Log[x])*(x - Log[x^2])), x] - (45*Defer[Int][x/((4/x - Log[x])^(x/(2*(x - Lo
g[x^2])))*(-4 + x*Log[x])*(x - Log[x^2])), x])/2 - (5*Defer[Int][x^2/((4/x - Log[x])^(x/(2*(x - Log[x^2])))*(-
4 + x*Log[x])*(x - Log[x^2])), x])/2 - 25*Defer[Int][Log[4/x - Log[x]]/((4/x - Log[x])^(x/(2*(x - Log[x^2])))*
(x - Log[x^2])^2), x] - 5*Defer[Int][(x*Log[4/x - Log[x]])/((4/x - Log[x])^(x/(2*(x - Log[x^2])))*(x - Log[x^2
])^2), x] + (25*Defer[Int][(Log[x^2]*Log[4/x - Log[x]])/((4/x - Log[x])^(x/(2*(x - Log[x^2])))*(x - Log[x^2])^
2), x])/2 + (5*Defer[Int][(x*Log[x^2]*Log[4/x - Log[x]])/((4/x - Log[x])^(x/(2*(x - Log[x^2])))*(x - Log[x^2])
^2), x])/2

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-40 x^2-16 x^3+2 x^3 (5+2 x) \log (x)-4 x (5+2 x) (-4+x \log (x)) \log \left (x^2\right )+2 (5+2 x) (-4+x \log (x)) \log ^2\left (x^2\right )-\left (\frac {4}{x}-\log (x)\right )^{\frac {x}{-2 x+2 \log \left (x^2\right )}} \left (-20 x-17 x^2-x^3+2 x^3 \log (x)+\left (20+25 x+x^2-4 x^2 \log (x)\right ) \log \left (x^2\right )+2 (-4+x \log (x)) \log ^2\left (x^2\right )+(5+x) (-4+x \log (x)) \left (-2+\log \left (x^2\right )\right ) \log \left (\frac {4}{x}-\log (x)\right )\right )\right )}{2 (4-x \log (x)) \left (x-\log \left (x^2\right )\right )^2} \, dx\\ &=\frac {5}{2} \int \frac {-40 x^2-16 x^3+2 x^3 (5+2 x) \log (x)-4 x (5+2 x) (-4+x \log (x)) \log \left (x^2\right )+2 (5+2 x) (-4+x \log (x)) \log ^2\left (x^2\right )-\left (\frac {4}{x}-\log (x)\right )^{\frac {x}{-2 x+2 \log \left (x^2\right )}} \left (-20 x-17 x^2-x^3+2 x^3 \log (x)+\left (20+25 x+x^2-4 x^2 \log (x)\right ) \log \left (x^2\right )+2 (-4+x \log (x)) \log ^2\left (x^2\right )+(5+x) (-4+x \log (x)) \left (-2+\log \left (x^2\right )\right ) \log \left (\frac {4}{x}-\log (x)\right )\right )}{(4-x \log (x)) \left (x-\log \left (x^2\right )\right )^2} \, dx\\ &=\frac {5}{2} \int \left (\frac {40 x^2}{(-4+x \log (x)) \left (x-\log \left (x^2\right )\right )^2}+\frac {16 x^3}{(-4+x \log (x)) \left (x-\log \left (x^2\right )\right )^2}-\frac {2 x^3 (5+2 x) \log (x)}{(-4+x \log (x)) \left (x-\log \left (x^2\right )\right )^2}+\frac {4 x (5+2 x) \log \left (x^2\right )}{\left (x-\log \left (x^2\right )\right )^2}-\frac {2 (5+2 x) \log ^2\left (x^2\right )}{\left (x-\log \left (x^2\right )\right )^2}+\frac {\left (\frac {4}{x}-\log (x)\right )^{-\frac {x}{2 \left (x-\log \left (x^2\right )\right )}} \left (20 x+17 x^2+x^3-2 x^3 \log (x)-20 \log \left (x^2\right )-25 x \log \left (x^2\right )-x^2 \log \left (x^2\right )+4 x^2 \log (x) \log \left (x^2\right )+8 \log ^2\left (x^2\right )-2 x \log (x) \log ^2\left (x^2\right )-40 \log \left (\frac {4}{x}-\log (x)\right )-8 x \log \left (\frac {4}{x}-\log (x)\right )+10 x \log (x) \log \left (\frac {4}{x}-\log (x)\right )+2 x^2 \log (x) \log \left (\frac {4}{x}-\log (x)\right )+20 \log \left (x^2\right ) \log \left (\frac {4}{x}-\log (x)\right )+4 x \log \left (x^2\right ) \log \left (\frac {4}{x}-\log (x)\right )-5 x \log (x) \log \left (x^2\right ) \log \left (\frac {4}{x}-\log (x)\right )-x^2 \log (x) \log \left (x^2\right ) \log \left (\frac {4}{x}-\log (x)\right )\right )}{(4-x \log (x)) \left (x-\log \left (x^2\right )\right )^2}\right ) \, dx\\ &=\frac {5}{2} \int \frac {\left (\frac {4}{x}-\log (x)\right )^{-\frac {x}{2 \left (x-\log \left (x^2\right )\right )}} \left (20 x+17 x^2+x^3-2 x^3 \log (x)-20 \log \left (x^2\right )-25 x \log \left (x^2\right )-x^2 \log \left (x^2\right )+4 x^2 \log (x) \log \left (x^2\right )+8 \log ^2\left (x^2\right )-2 x \log (x) \log ^2\left (x^2\right )-40 \log \left (\frac {4}{x}-\log (x)\right )-8 x \log \left (\frac {4}{x}-\log (x)\right )+10 x \log (x) \log \left (\frac {4}{x}-\log (x)\right )+2 x^2 \log (x) \log \left (\frac {4}{x}-\log (x)\right )+20 \log \left (x^2\right ) \log \left (\frac {4}{x}-\log (x)\right )+4 x \log \left (x^2\right ) \log \left (\frac {4}{x}-\log (x)\right )-5 x \log (x) \log \left (x^2\right ) \log \left (\frac {4}{x}-\log (x)\right )-x^2 \log (x) \log \left (x^2\right ) \log \left (\frac {4}{x}-\log (x)\right )\right )}{(4-x \log (x)) \left (x-\log \left (x^2\right )\right )^2} \, dx-5 \int \frac {x^3 (5+2 x) \log (x)}{(-4+x \log (x)) \left (x-\log \left (x^2\right )\right )^2} \, dx-5 \int \frac {(5+2 x) \log ^2\left (x^2\right )}{\left (x-\log \left (x^2\right )\right )^2} \, dx+10 \int \frac {x (5+2 x) \log \left (x^2\right )}{\left (x-\log \left (x^2\right )\right )^2} \, dx+40 \int \frac {x^3}{(-4+x \log (x)) \left (x-\log \left (x^2\right )\right )^2} \, dx+100 \int \frac {x^2}{(-4+x \log (x)) \left (x-\log \left (x^2\right )\right )^2} \, dx\\ &=\frac {5}{2} \int \frac {\left (\frac {4}{x}-\log (x)\right )^{-\frac {x}{2 \left (x-\log \left (x^2\right )\right )}} \left (20 x+17 x^2+x^3+8 \log ^2\left (x^2\right )-40 \log \left (\frac {4}{x}-\log (x)\right )-8 x \log \left (\frac {4}{x}-\log (x)\right )-\log \left (x^2\right ) \left (20+25 x+x^2-4 (5+x) \log \left (\frac {4}{x}-\log (x)\right )\right )-x \log (x) \left (2 \log ^2\left (x^2\right )+2 \left (x^2-(5+x) \log \left (\frac {4}{x}-\log (x)\right )\right )+\log \left (x^2\right ) \left (-4 x+(5+x) \log \left (\frac {4}{x}-\log (x)\right )\right )\right )\right )}{(4-x \log (x)) \left (x-\log \left (x^2\right )\right )^2} \, dx-5 \int \left (\frac {5 x^3 \log (x)}{(-4+x \log (x)) \left (x-\log \left (x^2\right )\right )^2}+\frac {2 x^4 \log (x)}{(-4+x \log (x)) \left (x-\log \left (x^2\right )\right )^2}\right ) \, dx-5 \int \left (5+2 x+\frac {x^2 (5+2 x)}{\left (x-\log \left (x^2\right )\right )^2}-\frac {2 x (5+2 x)}{x-\log \left (x^2\right )}\right ) \, dx+10 \int \left (\frac {x^2 (5+2 x)}{\left (x-\log \left (x^2\right )\right )^2}-\frac {x (5+2 x)}{x-\log \left (x^2\right )}\right ) \, dx+40 \int \frac {x^3}{(-4+x \log (x)) \left (x-\log \left (x^2\right )\right )^2} \, dx+100 \int \frac {x^2}{(-4+x \log (x)) \left (x-\log \left (x^2\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.35, size = 65, normalized size = 1.86 \begin {gather*} \frac {5}{2} \left (-10 x-2 x^2+\frac {2 \left (\frac {4}{x}-\log (x)\right )^{-\frac {x}{2 \left (x-\log \left (x^2\right )\right )}} \left (-20-4 x+5 x \log (x)+x^2 \log (x)\right )}{-4+x \log (x)}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(200*x^2 + 80*x^3 + (-50*x^3 - 20*x^4)*Log[x] + (-400*x - 160*x^2 + (100*x^2 + 40*x^3)*Log[x])*Log[x
^2] + (200 + 80*x + (-50*x - 20*x^2)*Log[x])*Log[x^2]^2 + ((4 - x*Log[x])/x)^(x/(-2*x + 2*Log[x^2]))*(-100*x -
 85*x^2 - 5*x^3 + 10*x^3*Log[x] + (100 + 125*x + 5*x^2 - 20*x^2*Log[x])*Log[x^2] + (-40 + 10*x*Log[x])*Log[x^2
]^2 + (200 + 40*x + (-50*x - 10*x^2)*Log[x] + (-100 - 20*x + (25*x + 5*x^2)*Log[x])*Log[x^2])*Log[(4 - x*Log[x
])/x]))/(-8*x^2 + 2*x^3*Log[x] + (16*x - 4*x^2*Log[x])*Log[x^2] + (-8 + 2*x*Log[x])*Log[x^2]^2),x]

[Out]

(5*(-10*x - 2*x^2 + (2*(-20 - 4*x + 5*x*Log[x] + x^2*Log[x]))/((4/x - Log[x])^(x/(2*(x - Log[x^2])))*(-4 + x*L
og[x]))))/2

________________________________________________________________________________________

fricas [A]  time = 0.80, size = 63, normalized size = 1.80 \begin {gather*} -\frac {5 \, {\left ({\left (x^{2} + 5 \, x\right )} \left (-\frac {x \log \relax (x) - 4}{x}\right )^{\frac {x}{2 \, {\left (x - 2 \, \log \relax (x)\right )}}} - x - 5\right )}}{\left (-\frac {x \log \relax (x) - 4}{x}\right )^{\frac {x}{2 \, {\left (x - 2 \, \log \relax (x)\right )}}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((((5*x^2+25*x)*log(x)-20*x-100)*log(x^2)+(-10*x^2-50*x)*log(x)+40*x+200)*log((-x*log(x)+4)/x)+(10*
x*log(x)-40)*log(x^2)^2+(-20*x^2*log(x)+5*x^2+125*x+100)*log(x^2)+10*x^3*log(x)-5*x^3-85*x^2-100*x)*exp(x*log(
(-x*log(x)+4)/x)/(2*log(x^2)-2*x))+((-20*x^2-50*x)*log(x)+80*x+200)*log(x^2)^2+((40*x^3+100*x^2)*log(x)-160*x^
2-400*x)*log(x^2)+(-20*x^4-50*x^3)*log(x)+80*x^3+200*x^2)/((2*x*log(x)-8)*log(x^2)^2+(-4*x^2*log(x)+16*x)*log(
x^2)+2*x^3*log(x)-8*x^2),x, algorithm="fricas")

[Out]

-5*((x^2 + 5*x)*(-(x*log(x) - 4)/x)^(1/2*x/(x - 2*log(x))) - x - 5)/(-(x*log(x) - 4)/x)^(1/2*x/(x - 2*log(x)))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5 \, {\left (16 \, x^{3} - 2 \, {\left ({\left (2 \, x^{2} + 5 \, x\right )} \log \relax (x) - 8 \, x - 20\right )} \log \left (x^{2}\right )^{2} + 40 \, x^{2} - 4 \, {\left (8 \, x^{2} - {\left (2 \, x^{3} + 5 \, x^{2}\right )} \log \relax (x) + 20 \, x\right )} \log \left (x^{2}\right ) - 2 \, {\left (2 \, x^{4} + 5 \, x^{3}\right )} \log \relax (x) + \frac {2 \, x^{3} \log \relax (x) - x^{3} + 2 \, {\left (x \log \relax (x) - 4\right )} \log \left (x^{2}\right )^{2} - 17 \, x^{2} - {\left (4 \, x^{2} \log \relax (x) - x^{2} - 25 \, x - 20\right )} \log \left (x^{2}\right ) + {\left ({\left ({\left (x^{2} + 5 \, x\right )} \log \relax (x) - 4 \, x - 20\right )} \log \left (x^{2}\right ) - 2 \, {\left (x^{2} + 5 \, x\right )} \log \relax (x) + 8 \, x + 40\right )} \log \left (-\frac {x \log \relax (x) - 4}{x}\right ) - 20 \, x}{\left (-\frac {x \log \relax (x) - 4}{x}\right )^{\frac {x}{2 \, {\left (x - \log \left (x^{2}\right )\right )}}}}\right )}}{2 \, {\left (x^{3} \log \relax (x) + {\left (x \log \relax (x) - 4\right )} \log \left (x^{2}\right )^{2} - 4 \, x^{2} - 2 \, {\left (x^{2} \log \relax (x) - 4 \, x\right )} \log \left (x^{2}\right )\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((((5*x^2+25*x)*log(x)-20*x-100)*log(x^2)+(-10*x^2-50*x)*log(x)+40*x+200)*log((-x*log(x)+4)/x)+(10*
x*log(x)-40)*log(x^2)^2+(-20*x^2*log(x)+5*x^2+125*x+100)*log(x^2)+10*x^3*log(x)-5*x^3-85*x^2-100*x)*exp(x*log(
(-x*log(x)+4)/x)/(2*log(x^2)-2*x))+((-20*x^2-50*x)*log(x)+80*x+200)*log(x^2)^2+((40*x^3+100*x^2)*log(x)-160*x^
2-400*x)*log(x^2)+(-20*x^4-50*x^3)*log(x)+80*x^3+200*x^2)/((2*x*log(x)-8)*log(x^2)^2+(-4*x^2*log(x)+16*x)*log(
x^2)+2*x^3*log(x)-8*x^2),x, algorithm="giac")

[Out]

integrate(5/2*(16*x^3 - 2*((2*x^2 + 5*x)*log(x) - 8*x - 20)*log(x^2)^2 + 40*x^2 - 4*(8*x^2 - (2*x^3 + 5*x^2)*l
og(x) + 20*x)*log(x^2) - 2*(2*x^4 + 5*x^3)*log(x) + (2*x^3*log(x) - x^3 + 2*(x*log(x) - 4)*log(x^2)^2 - 17*x^2
 - (4*x^2*log(x) - x^2 - 25*x - 20)*log(x^2) + (((x^2 + 5*x)*log(x) - 4*x - 20)*log(x^2) - 2*(x^2 + 5*x)*log(x
) + 8*x + 40)*log(-(x*log(x) - 4)/x) - 20*x)/(-(x*log(x) - 4)/x)^(1/2*x/(x - log(x^2))))/(x^3*log(x) + (x*log(
x) - 4)*log(x^2)^2 - 4*x^2 - 2*(x^2*log(x) - 4*x)*log(x^2)), x)

________________________________________________________________________________________

maple [C]  time = 1.07, size = 224, normalized size = 6.40




method result size



risch \(-5 x^{2}-25 x +\left (25+5 x \right ) {\mathrm e}^{-\frac {x \left (-i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )-4\right )}{x}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )-4\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )-4\right )}{x}\right )^{2} \mathrm {csgn}\left (i \left (x \ln \relax (x )-4\right )\right )+i \pi \,\mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )-4\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x \ln \relax (x )-4\right )\right )+2 i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )-4\right )}{x}\right )^{2}-2 i \pi +2 \ln \relax (x )-2 \ln \left (x \ln \relax (x )-4\right )\right )}{2 \left (-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+4 \ln \relax (x )-2 x \right )}}\) \(224\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((((5*x^2+25*x)*ln(x)-20*x-100)*ln(x^2)+(-10*x^2-50*x)*ln(x)+40*x+200)*ln((-x*ln(x)+4)/x)+(10*x*ln(x)-40)
*ln(x^2)^2+(-20*x^2*ln(x)+5*x^2+125*x+100)*ln(x^2)+10*x^3*ln(x)-5*x^3-85*x^2-100*x)*exp(x*ln((-x*ln(x)+4)/x)/(
2*ln(x^2)-2*x))+((-20*x^2-50*x)*ln(x)+80*x+200)*ln(x^2)^2+((40*x^3+100*x^2)*ln(x)-160*x^2-400*x)*ln(x^2)+(-20*
x^4-50*x^3)*ln(x)+80*x^3+200*x^2)/((2*x*ln(x)-8)*ln(x^2)^2+(-4*x^2*ln(x)+16*x)*ln(x^2)+2*x^3*ln(x)-8*x^2),x,me
thod=_RETURNVERBOSE)

[Out]

-5*x^2-25*x+(25+5*x)*exp(-1/2*x*(-I*Pi*csgn(I*(x*ln(x)-4)/x)^3-I*Pi*csgn(I*(x*ln(x)-4)/x)^2*csgn(I/x)-I*Pi*csg
n(I*(x*ln(x)-4)/x)^2*csgn(I*(x*ln(x)-4))+I*Pi*csgn(I*(x*ln(x)-4)/x)*csgn(I/x)*csgn(I*(x*ln(x)-4))+2*I*Pi*csgn(
I*(x*ln(x)-4)/x)^2-2*I*Pi+2*ln(x)-2*ln(x*ln(x)-4))/(-I*Pi*csgn(I*x^2)^3+2*I*Pi*csgn(I*x)*csgn(I*x^2)^2-I*Pi*cs
gn(I*x)^2*csgn(I*x^2)+4*ln(x)-2*x))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -25 \, x - 10 \, \int x\,{d x} + \frac {5}{2} \, \int \frac {{\left (x^{\frac {7}{2}} {\left (2 \, \log \relax (x) - 1\right )} - {\left (2 \, \log \relax (x)^{3} + 6 \, \log \relax (x)^{2} - 2 \, \log \relax (x) + 17\right )} x^{\frac {5}{2}} - 2 \, {\left (\log \relax (x)^{3} - 9 \, \log \relax (x)^{2} - 21 \, \log \relax (x) + 10\right )} x^{\frac {3}{2}} + 8 \, \sqrt {x} \log \relax (x)^{2} + 2 \, {\left ({\left (\log \relax (x)^{2} - \log \relax (x)\right )} x^{\frac {5}{2}} + {\left (5 \, \log \relax (x)^{2} - 9 \, \log \relax (x) + 4\right )} x^{\frac {3}{2}} - 20 \, \sqrt {x} {\left (\log \relax (x) - 1\right )}\right )} \log \left (-x \log \relax (x) + 4\right )\right )} e^{\left (-\frac {\log \left (-x \log \relax (x) + 4\right ) \log \relax (x)}{x - 2 \, \log \relax (x)} + \frac {\log \relax (x)^{2}}{x - 2 \, \log \relax (x)}\right )}}{{\left (x^{3} \log \relax (x) - 4 \, {\left (\log \relax (x)^{2} + 1\right )} x^{2} + 4 \, {\left (\log \relax (x)^{3} + 4 \, \log \relax (x)\right )} x - 16 \, \log \relax (x)^{2}\right )} \sqrt {-x \log \relax (x) + 4}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((((5*x^2+25*x)*log(x)-20*x-100)*log(x^2)+(-10*x^2-50*x)*log(x)+40*x+200)*log((-x*log(x)+4)/x)+(10*
x*log(x)-40)*log(x^2)^2+(-20*x^2*log(x)+5*x^2+125*x+100)*log(x^2)+10*x^3*log(x)-5*x^3-85*x^2-100*x)*exp(x*log(
(-x*log(x)+4)/x)/(2*log(x^2)-2*x))+((-20*x^2-50*x)*log(x)+80*x+200)*log(x^2)^2+((40*x^3+100*x^2)*log(x)-160*x^
2-400*x)*log(x^2)+(-20*x^4-50*x^3)*log(x)+80*x^3+200*x^2)/((2*x*log(x)-8)*log(x^2)^2+(-4*x^2*log(x)+16*x)*log(
x^2)+2*x^3*log(x)-8*x^2),x, algorithm="maxima")

[Out]

-25*x - 10*integrate(x, x) + 5/2*integrate((x^(7/2)*(2*log(x) - 1) - (2*log(x)^3 + 6*log(x)^2 - 2*log(x) + 17)
*x^(5/2) - 2*(log(x)^3 - 9*log(x)^2 - 21*log(x) + 10)*x^(3/2) + 8*sqrt(x)*log(x)^2 + 2*((log(x)^2 - log(x))*x^
(5/2) + (5*log(x)^2 - 9*log(x) + 4)*x^(3/2) - 20*sqrt(x)*(log(x) - 1))*log(-x*log(x) + 4))*e^(-log(-x*log(x) +
 4)*log(x)/(x - 2*log(x)) + log(x)^2/(x - 2*log(x)))/((x^3*log(x) - 4*(log(x)^2 + 1)*x^2 + 4*(log(x)^3 + 4*log
(x))*x - 16*log(x)^2)*sqrt(-x*log(x) + 4)), x)

________________________________________________________________________________________

mupad [B]  time = 2.90, size = 37, normalized size = 1.06 \begin {gather*} -5\,\left (x+5\right )\,\left (x-\frac {1}{{\left (-\frac {x\,\ln \relax (x)-4}{x}\right )}^{\frac {x}{2\,x-2\,\ln \left (x^2\right )}}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-(x*log(-(x*log(x) - 4)/x))/(2*x - 2*log(x^2)))*(10*x^3*log(x) - 100*x + log(x^2)^2*(10*x*log(x) - 40
) + log(x^2)*(125*x - 20*x^2*log(x) + 5*x^2 + 100) + log(-(x*log(x) - 4)/x)*(40*x - log(x^2)*(20*x - log(x)*(2
5*x + 5*x^2) + 100) - log(x)*(50*x + 10*x^2) + 200) - 85*x^2 - 5*x^3) - log(x^2)*(400*x - log(x)*(100*x^2 + 40
*x^3) + 160*x^2) - log(x)*(50*x^3 + 20*x^4) + 200*x^2 + 80*x^3 + log(x^2)^2*(80*x - log(x)*(50*x + 20*x^2) + 2
00))/(2*x^3*log(x) + log(x^2)^2*(2*x*log(x) - 8) - 8*x^2 + log(x^2)*(16*x - 4*x^2*log(x))),x)

[Out]

-5*(x + 5)*(x - 1/(-(x*log(x) - 4)/x)^(x/(2*x - 2*log(x^2))))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((((5*x**2+25*x)*ln(x)-20*x-100)*ln(x**2)+(-10*x**2-50*x)*ln(x)+40*x+200)*ln((-x*ln(x)+4)/x)+(10*x*
ln(x)-40)*ln(x**2)**2+(-20*x**2*ln(x)+5*x**2+125*x+100)*ln(x**2)+10*x**3*ln(x)-5*x**3-85*x**2-100*x)*exp(x*ln(
(-x*ln(x)+4)/x)/(2*ln(x**2)-2*x))+((-20*x**2-50*x)*ln(x)+80*x+200)*ln(x**2)**2+((40*x**3+100*x**2)*ln(x)-160*x
**2-400*x)*ln(x**2)+(-20*x**4-50*x**3)*ln(x)+80*x**3+200*x**2)/((2*x*ln(x)-8)*ln(x**2)**2+(-4*x**2*ln(x)+16*x)
*ln(x**2)+2*x**3*ln(x)-8*x**2),x)

[Out]

Timed out

________________________________________________________________________________________