Optimal. Leaf size=16 \[ \frac {x (5+x)}{\log \left (x \left (5+\frac {1}{x}+x\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25 x-15 x^2-2 x^3+\left (5+27 x+15 x^2+2 x^3\right ) \log \left (1+5 x+x^2\right )}{\left (1+5 x+x^2\right ) \log ^2\left (1+5 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {x \left (25+15 x+2 x^2\right )}{\left (1+5 x+x^2\right ) \log ^2\left (1+5 x+x^2\right )}+\frac {5+2 x}{\log \left (1+5 x+x^2\right )}\right ) \, dx\\ &=-\int \frac {x \left (25+15 x+2 x^2\right )}{\left (1+5 x+x^2\right ) \log ^2\left (1+5 x+x^2\right )} \, dx+\int \frac {5+2 x}{\log \left (1+5 x+x^2\right )} \, dx\\ &=-\int \left (\frac {5}{\log ^2\left (1+5 x+x^2\right )}+\frac {2 x}{\log ^2\left (1+5 x+x^2\right )}+\frac {-5-2 x}{\left (1+5 x+x^2\right ) \log ^2\left (1+5 x+x^2\right )}\right ) \, dx+\int \left (\frac {5}{\log \left (1+5 x+x^2\right )}+\frac {2 x}{\log \left (1+5 x+x^2\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x}{\log ^2\left (1+5 x+x^2\right )} \, dx\right )+2 \int \frac {x}{\log \left (1+5 x+x^2\right )} \, dx-5 \int \frac {1}{\log ^2\left (1+5 x+x^2\right )} \, dx+5 \int \frac {1}{\log \left (1+5 x+x^2\right )} \, dx-\int \frac {-5-2 x}{\left (1+5 x+x^2\right ) \log ^2\left (1+5 x+x^2\right )} \, dx\\ &=-\frac {1}{\log \left (1+5 x+x^2\right )}-2 \int \frac {x}{\log ^2\left (1+5 x+x^2\right )} \, dx+2 \int \frac {x}{\log \left (1+5 x+x^2\right )} \, dx-5 \int \frac {1}{\log ^2\left (1+5 x+x^2\right )} \, dx+5 \int \frac {1}{\log \left (1+5 x+x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 16, normalized size = 1.00 \begin {gather*} \frac {x (5+x)}{\log \left (1+5 x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 19, normalized size = 1.19 \begin {gather*} \frac {x^{2} + 5 \, x}{\log \left (x^{2} + 5 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 19, normalized size = 1.19 \begin {gather*} \frac {x^{2} + 5 \, x}{\log \left (x^{2} + 5 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 17, normalized size = 1.06
method | result | size |
risch | \(\frac {\left (5+x \right ) x}{\ln \left (x^{2}+5 x +1\right )}\) | \(17\) |
norman | \(\frac {x^{2}+5 x}{\ln \left (x^{2}+5 x +1\right )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 19, normalized size = 1.19 \begin {gather*} \frac {x^{2} + 5 \, x}{\log \left (x^{2} + 5 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 16, normalized size = 1.00 \begin {gather*} \frac {x\,\left (x+5\right )}{\ln \left (x^2+5\,x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 15, normalized size = 0.94 \begin {gather*} \frac {x^{2} + 5 x}{\log {\left (x^{2} + 5 x + 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________