Optimal. Leaf size=32 \[ \log \left (\log (4) \left (e^{12 x}-x^2+\frac {5}{\log \left (x-\frac {4+x}{1+x}\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 85.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20-10 x-5 x^2+\left (8 x+8 x^2-2 x^3-2 x^4+e^{12 x} \left (-48-48 x+12 x^2+12 x^3\right )\right ) \log ^2\left (\frac {-4+x^2}{1+x}\right )}{\left (-20-20 x+5 x^2+5 x^3\right ) \log \left (\frac {-4+x^2}{1+x}\right )+\left (4 x^2+4 x^3-x^4-x^5+e^{12 x} \left (-4-4 x+x^2+x^3\right )\right ) \log ^2\left (\frac {-4+x^2}{1+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (4+2 x+x^2\right )-2 \left (6 e^{12 x}-x\right ) \left (-4-4 x+x^2+x^3\right ) \log ^2\left (\frac {-4+x^2}{1+x}\right )}{\left (4+4 x-x^2-x^3\right ) \log \left (\frac {-4+x^2}{1+x}\right ) \left (5-\left (-e^{12 x}+x^2\right ) \log \left (\frac {-4+x^2}{1+x}\right )\right )} \, dx\\ &=\int \left (12-\frac {-20-10 x-5 x^2+240 \log \left (\frac {-4+x^2}{1+x}\right )+240 x \log \left (\frac {-4+x^2}{1+x}\right )-60 x^2 \log \left (\frac {-4+x^2}{1+x}\right )-60 x^3 \log \left (\frac {-4+x^2}{1+x}\right )+8 x \log ^2\left (\frac {-4+x^2}{1+x}\right )-40 x^2 \log ^2\left (\frac {-4+x^2}{1+x}\right )-50 x^3 \log ^2\left (\frac {-4+x^2}{1+x}\right )+10 x^4 \log ^2\left (\frac {-4+x^2}{1+x}\right )+12 x^5 \log ^2\left (\frac {-4+x^2}{1+x}\right )}{(-2+x) (1+x) (2+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (-5-e^{12 x} \log \left (\frac {-4+x^2}{1+x}\right )+x^2 \log \left (\frac {-4+x^2}{1+x}\right )\right )}\right ) \, dx\\ &=12 x-\int \frac {-20-10 x-5 x^2+240 \log \left (\frac {-4+x^2}{1+x}\right )+240 x \log \left (\frac {-4+x^2}{1+x}\right )-60 x^2 \log \left (\frac {-4+x^2}{1+x}\right )-60 x^3 \log \left (\frac {-4+x^2}{1+x}\right )+8 x \log ^2\left (\frac {-4+x^2}{1+x}\right )-40 x^2 \log ^2\left (\frac {-4+x^2}{1+x}\right )-50 x^3 \log ^2\left (\frac {-4+x^2}{1+x}\right )+10 x^4 \log ^2\left (\frac {-4+x^2}{1+x}\right )+12 x^5 \log ^2\left (\frac {-4+x^2}{1+x}\right )}{(-2+x) (1+x) (2+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (-5-e^{12 x} \log \left (\frac {-4+x^2}{1+x}\right )+x^2 \log \left (\frac {-4+x^2}{1+x}\right )\right )} \, dx\\ &=12 x-\int \frac {-5 \left (4+2 x+x^2\right )-60 \left (-4-4 x+x^2+x^3\right ) \log \left (\frac {-4+x^2}{1+x}\right )+2 x \left (4-20 x-25 x^2+5 x^3+6 x^4\right ) \log ^2\left (\frac {-4+x^2}{1+x}\right )}{(2-x) (1+x) (2+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (5-\left (-e^{12 x}+x^2\right ) \log \left (\frac {-4+x^2}{1+x}\right )\right )} \, dx\\ &=12 x-\int \left (\frac {-20-10 x-5 x^2+240 \log \left (\frac {-4+x^2}{1+x}\right )+240 x \log \left (\frac {-4+x^2}{1+x}\right )-60 x^2 \log \left (\frac {-4+x^2}{1+x}\right )-60 x^3 \log \left (\frac {-4+x^2}{1+x}\right )+8 x \log ^2\left (\frac {-4+x^2}{1+x}\right )-40 x^2 \log ^2\left (\frac {-4+x^2}{1+x}\right )-50 x^3 \log ^2\left (\frac {-4+x^2}{1+x}\right )+10 x^4 \log ^2\left (\frac {-4+x^2}{1+x}\right )+12 x^5 \log ^2\left (\frac {-4+x^2}{1+x}\right )}{12 (-2+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (-5-e^{12 x} \log \left (\frac {-4+x^2}{1+x}\right )+x^2 \log \left (\frac {-4+x^2}{1+x}\right )\right )}-\frac {-20-10 x-5 x^2+240 \log \left (\frac {-4+x^2}{1+x}\right )+240 x \log \left (\frac {-4+x^2}{1+x}\right )-60 x^2 \log \left (\frac {-4+x^2}{1+x}\right )-60 x^3 \log \left (\frac {-4+x^2}{1+x}\right )+8 x \log ^2\left (\frac {-4+x^2}{1+x}\right )-40 x^2 \log ^2\left (\frac {-4+x^2}{1+x}\right )-50 x^3 \log ^2\left (\frac {-4+x^2}{1+x}\right )+10 x^4 \log ^2\left (\frac {-4+x^2}{1+x}\right )+12 x^5 \log ^2\left (\frac {-4+x^2}{1+x}\right )}{3 (1+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (-5-e^{12 x} \log \left (\frac {-4+x^2}{1+x}\right )+x^2 \log \left (\frac {-4+x^2}{1+x}\right )\right )}+\frac {-20-10 x-5 x^2+240 \log \left (\frac {-4+x^2}{1+x}\right )+240 x \log \left (\frac {-4+x^2}{1+x}\right )-60 x^2 \log \left (\frac {-4+x^2}{1+x}\right )-60 x^3 \log \left (\frac {-4+x^2}{1+x}\right )+8 x \log ^2\left (\frac {-4+x^2}{1+x}\right )-40 x^2 \log ^2\left (\frac {-4+x^2}{1+x}\right )-50 x^3 \log ^2\left (\frac {-4+x^2}{1+x}\right )+10 x^4 \log ^2\left (\frac {-4+x^2}{1+x}\right )+12 x^5 \log ^2\left (\frac {-4+x^2}{1+x}\right )}{4 (2+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (-5-e^{12 x} \log \left (\frac {-4+x^2}{1+x}\right )+x^2 \log \left (\frac {-4+x^2}{1+x}\right )\right )}\right ) \, dx\\ &=12 x-\frac {1}{12} \int \frac {-20-10 x-5 x^2+240 \log \left (\frac {-4+x^2}{1+x}\right )+240 x \log \left (\frac {-4+x^2}{1+x}\right )-60 x^2 \log \left (\frac {-4+x^2}{1+x}\right )-60 x^3 \log \left (\frac {-4+x^2}{1+x}\right )+8 x \log ^2\left (\frac {-4+x^2}{1+x}\right )-40 x^2 \log ^2\left (\frac {-4+x^2}{1+x}\right )-50 x^3 \log ^2\left (\frac {-4+x^2}{1+x}\right )+10 x^4 \log ^2\left (\frac {-4+x^2}{1+x}\right )+12 x^5 \log ^2\left (\frac {-4+x^2}{1+x}\right )}{(-2+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (-5-e^{12 x} \log \left (\frac {-4+x^2}{1+x}\right )+x^2 \log \left (\frac {-4+x^2}{1+x}\right )\right )} \, dx-\frac {1}{4} \int \frac {-20-10 x-5 x^2+240 \log \left (\frac {-4+x^2}{1+x}\right )+240 x \log \left (\frac {-4+x^2}{1+x}\right )-60 x^2 \log \left (\frac {-4+x^2}{1+x}\right )-60 x^3 \log \left (\frac {-4+x^2}{1+x}\right )+8 x \log ^2\left (\frac {-4+x^2}{1+x}\right )-40 x^2 \log ^2\left (\frac {-4+x^2}{1+x}\right )-50 x^3 \log ^2\left (\frac {-4+x^2}{1+x}\right )+10 x^4 \log ^2\left (\frac {-4+x^2}{1+x}\right )+12 x^5 \log ^2\left (\frac {-4+x^2}{1+x}\right )}{(2+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (-5-e^{12 x} \log \left (\frac {-4+x^2}{1+x}\right )+x^2 \log \left (\frac {-4+x^2}{1+x}\right )\right )} \, dx+\frac {1}{3} \int \frac {-20-10 x-5 x^2+240 \log \left (\frac {-4+x^2}{1+x}\right )+240 x \log \left (\frac {-4+x^2}{1+x}\right )-60 x^2 \log \left (\frac {-4+x^2}{1+x}\right )-60 x^3 \log \left (\frac {-4+x^2}{1+x}\right )+8 x \log ^2\left (\frac {-4+x^2}{1+x}\right )-40 x^2 \log ^2\left (\frac {-4+x^2}{1+x}\right )-50 x^3 \log ^2\left (\frac {-4+x^2}{1+x}\right )+10 x^4 \log ^2\left (\frac {-4+x^2}{1+x}\right )+12 x^5 \log ^2\left (\frac {-4+x^2}{1+x}\right )}{(1+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (-5-e^{12 x} \log \left (\frac {-4+x^2}{1+x}\right )+x^2 \log \left (\frac {-4+x^2}{1+x}\right )\right )} \, dx\\ &=12 x-\frac {1}{12} \int \frac {-5 \left (4+2 x+x^2\right )-60 \left (-4-4 x+x^2+x^3\right ) \log \left (\frac {-4+x^2}{1+x}\right )+2 x \left (4-20 x-25 x^2+5 x^3+6 x^4\right ) \log ^2\left (\frac {-4+x^2}{1+x}\right )}{(2-x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (5-\left (-e^{12 x}+x^2\right ) \log \left (\frac {-4+x^2}{1+x}\right )\right )} \, dx-\frac {1}{4} \int \frac {5 \left (4+2 x+x^2\right )+60 \left (-4-4 x+x^2+x^3\right ) \log \left (\frac {-4+x^2}{1+x}\right )-2 x \left (4-20 x-25 x^2+5 x^3+6 x^4\right ) \log ^2\left (\frac {-4+x^2}{1+x}\right )}{(2+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (5-\left (-e^{12 x}+x^2\right ) \log \left (\frac {-4+x^2}{1+x}\right )\right )} \, dx+\frac {1}{3} \int \frac {5 \left (4+2 x+x^2\right )+60 \left (-4-4 x+x^2+x^3\right ) \log \left (\frac {-4+x^2}{1+x}\right )-2 x \left (4-20 x-25 x^2+5 x^3+6 x^4\right ) \log ^2\left (\frac {-4+x^2}{1+x}\right )}{(1+x) \log \left (\frac {-4+x^2}{1+x}\right ) \left (5-\left (-e^{12 x}+x^2\right ) \log \left (\frac {-4+x^2}{1+x}\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.94, size = 54, normalized size = 1.69 \begin {gather*} -\log \left (\log \left (\frac {-4+x^2}{1+x}\right )\right )+\log \left (5+e^{12 x} \log \left (\frac {-4+x^2}{1+x}\right )-x^2 \log \left (\frac {-4+x^2}{1+x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.50, size = 66, normalized size = 2.06 \begin {gather*} \log \left (-x^{2} + e^{\left (12 \, x\right )}\right ) + \log \left (\frac {{\left (x^{2} - e^{\left (12 \, x\right )}\right )} \log \left (\frac {x^{2} - 4}{x + 1}\right ) - 5}{x^{2} - e^{\left (12 \, x\right )}}\right ) - \log \left (\log \left (\frac {x^{2} - 4}{x + 1}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.00, size = 53, normalized size = 1.66 \begin {gather*} \log \left (-x^{2} \log \left (\frac {x^{2} - 4}{x + 1}\right ) + e^{\left (12 \, x\right )} \log \left (\frac {x^{2} - 4}{x + 1}\right ) + 5\right ) - \log \left (\log \left (\frac {x^{2} - 4}{x + 1}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.43, size = 433, normalized size = 13.53
method | result | size |
risch | \(\ln \left (-x^{2}+{\mathrm e}^{12 x}\right )+\ln \left (\ln \left (x^{2}-4\right )-\frac {i \left (\pi \,x^{2} \mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (i \left (x^{2}-4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )-\pi \,x^{2} \mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )^{2}-\pi \,x^{2} \mathrm {csgn}\left (i \left (x^{2}-4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )^{2}+\pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (i \left (x^{2}-4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right ) {\mathrm e}^{12 x}+\pi \,\mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )^{2} {\mathrm e}^{12 x}+\pi \,\mathrm {csgn}\left (i \left (x^{2}-4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )^{2} {\mathrm e}^{12 x}-\pi \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )^{3} {\mathrm e}^{12 x}-2 i x^{2} \ln \left (x +1\right )+2 i {\mathrm e}^{12 x} \ln \left (x +1\right )-10 i\right )}{2 \left (x^{2}-{\mathrm e}^{12 x}\right )}\right )-\ln \left (\ln \left (x^{2}-4\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (i \left (x^{2}-4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x +1}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x^{2}-4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (x^{2}-4\right )}{x +1}\right )^{3}-2 i \ln \left (x +1\right )\right )}{2}\right )\) | \(433\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 97, normalized size = 3.03 \begin {gather*} \log \left (x + e^{\left (6 \, x\right )}\right ) + \log \left (-x + e^{\left (6 \, x\right )}\right ) + \log \left (\frac {{\left (x^{2} - e^{\left (12 \, x\right )}\right )} \log \left (x + 2\right ) - {\left (x^{2} - e^{\left (12 \, x\right )}\right )} \log \left (x + 1\right ) + {\left (x^{2} - e^{\left (12 \, x\right )}\right )} \log \left (x - 2\right ) - 5}{x^{2} - e^{\left (12 \, x\right )}}\right ) - \log \left (\log \left (x + 2\right ) - \log \left (x + 1\right ) + \log \left (x - 2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {10\,x+{\ln \left (\frac {x^2-4}{x+1}\right )}^2\,\left ({\mathrm {e}}^{12\,x}\,\left (-12\,x^3-12\,x^2+48\,x+48\right )-8\,x-8\,x^2+2\,x^3+2\,x^4\right )+5\,x^2+20}{\left ({\mathrm {e}}^{12\,x}\,\left (-x^3-x^2+4\,x+4\right )-4\,x^2-4\,x^3+x^4+x^5\right )\,{\ln \left (\frac {x^2-4}{x+1}\right )}^2+\left (-5\,x^3-5\,x^2+20\,x+20\right )\,\ln \left (\frac {x^2-4}{x+1}\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.38, size = 31, normalized size = 0.97 \begin {gather*} \log {\left (\frac {- x^{2} \log {\left (\frac {x^{2} - 4}{x + 1} \right )} + 5}{\log {\left (\frac {x^{2} - 4}{x + 1} \right )}} + e^{12 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________