Optimal. Leaf size=31 \[ 3 \left (5+\frac {x^2}{2 \left (3+\log \left (\frac {x^2}{\left (4-\frac {\log (4)}{x}\right )^2}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-24 x^2+3 x \log (4)+\left (-12 x^2+3 x \log (4)\right ) \log \left (\frac {x^4}{16 x^2-8 x \log (4)+\log ^2(4)}\right )}{-36 x+9 \log (4)+(-24 x+6 \log (4)) \log \left (\frac {x^4}{16 x^2-8 x \log (4)+\log ^2(4)}\right )+(-4 x+\log (4)) \log ^2\left (\frac {x^4}{16 x^2-8 x \log (4)+\log ^2(4)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 x \left (8 x-\log (4)+(4 x-\log (4)) \log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )}{(4 x-\log (4)) \left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )^2} \, dx\\ &=3 \int \frac {x \left (8 x-\log (4)+(4 x-\log (4)) \log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )}{(4 x-\log (4)) \left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )^2} \, dx\\ &=3 \int \left (-\frac {2 x (2 x-\log (4))}{(4 x-\log (4)) \left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )^2}+\frac {x}{3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )}\right ) \, dx\\ &=3 \int \frac {x}{3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )} \, dx-6 \int \frac {x (2 x-\log (4))}{(4 x-\log (4)) \left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )^2} \, dx\\ &=3 \int \frac {x}{3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )} \, dx-6 \int \left (\frac {x}{2 \left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )^2}-\frac {\log (4)}{8 \left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )^2}-\frac {\log ^2(4)}{8 (4 x-\log (4)) \left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {x}{\left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )^2} \, dx\right )+3 \int \frac {x}{3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )} \, dx+\frac {1}{4} (3 \log (4)) \int \frac {1}{\left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )^2} \, dx+\frac {1}{4} \left (3 \log ^2(4)\right ) \int \frac {1}{(4 x-\log (4)) \left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 24, normalized size = 0.77 \begin {gather*} \frac {3 x^2}{2 \left (3+\log \left (\frac {x^4}{(-4 x+\log (4))^2}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 32, normalized size = 1.03 \begin {gather*} \frac {3 \, x^{2}}{2 \, {\left (\log \left (\frac {x^{4}}{4 \, {\left (4 \, x^{2} - 4 \, x \log \relax (2) + \log \relax (2)^{2}\right )}}\right ) + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 35, normalized size = 1.13 \begin {gather*} -\frac {3 \, x^{2}}{2 \, {\left (2 \, \log \relax (2) - \log \left (x^{4}\right ) + \log \left (4 \, x^{2} - 4 \, x \log \relax (2) + \log \relax (2)^{2}\right ) - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 34, normalized size = 1.10
method | result | size |
norman | \(\frac {3 x^{2}}{2 \left (\ln \left (\frac {x^{4}}{4 \ln \relax (2)^{2}-16 x \ln \relax (2)+16 x^{2}}\right )+3\right )}\) | \(34\) |
risch | \(\frac {3 x^{2}}{2 \left (\ln \left (\frac {x^{4}}{4 \ln \relax (2)^{2}-16 x \ln \relax (2)+16 x^{2}}\right )+3\right )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 28, normalized size = 0.90 \begin {gather*} -\frac {3 \, x^{2}}{2 \, {\left (2 \, \log \relax (2) + 2 \, \log \left (2 \, x - \log \relax (2)\right ) - 4 \, \log \relax (x) - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {\ln \left (\frac {x^4}{16\,x^2-16\,\ln \relax (2)\,x+4\,{\ln \relax (2)}^2}\right )\,\left (6\,x\,\ln \relax (2)-12\,x^2\right )+6\,x\,\ln \relax (2)-24\,x^2}{\left (4\,x-2\,\ln \relax (2)\right )\,{\ln \left (\frac {x^4}{16\,x^2-16\,\ln \relax (2)\,x+4\,{\ln \relax (2)}^2}\right )}^2+\left (24\,x-12\,\ln \relax (2)\right )\,\ln \left (\frac {x^4}{16\,x^2-16\,\ln \relax (2)\,x+4\,{\ln \relax (2)}^2}\right )+36\,x-18\,\ln \relax (2)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 31, normalized size = 1.00 \begin {gather*} \frac {3 x^{2}}{2 \log {\left (\frac {x^{4}}{16 x^{2} - 16 x \log {\relax (2 )} + 4 \log {\relax (2 )}^{2}} \right )} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________