Optimal. Leaf size=19 \[ \frac {3}{(\log (16)+\log (1+x)) \log (-3+2 x)} \]
________________________________________________________________________________________
Rubi [F] time = 3.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(-6-6 x) \log (16)+(-6-6 x) \log (1+x)+(9-6 x) \log (-3+2 x)}{\left (\left (-3-x+2 x^2\right ) \log ^2(16)+\left (-6-2 x+4 x^2\right ) \log (16) \log (1+x)+\left (-3-x+2 x^2\right ) \log ^2(1+x)\right ) \log ^2(-3+2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 ((1+x) \log (256)+2 (1+x) \log (1+x)+(-3+2 x) \log (-3+2 x))}{\left (3+x-2 x^2\right ) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx\\ &=3 \int \frac {(1+x) \log (256)+2 (1+x) \log (1+x)+(-3+2 x) \log (-3+2 x)}{\left (3+x-2 x^2\right ) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx\\ &=3 \int \left (\frac {2 (\log (256)+x \log (256)+2 \log (1+x)+2 x \log (1+x)-3 \log (-3+2 x)+2 x \log (-3+2 x))}{5 (3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {\log (256)+x \log (256)+2 \log (1+x)+2 x \log (1+x)-3 \log (-3+2 x)+2 x \log (-3+2 x)}{5 (1+x) \log ^2(-3+2 x) \log ^2(16+16 x)}\right ) \, dx\\ &=\frac {3}{5} \int \frac {\log (256)+x \log (256)+2 \log (1+x)+2 x \log (1+x)-3 \log (-3+2 x)+2 x \log (-3+2 x)}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {6}{5} \int \frac {\log (256)+x \log (256)+2 \log (1+x)+2 x \log (1+x)-3 \log (-3+2 x)+2 x \log (-3+2 x)}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx\\ &=\frac {3}{5} \int \left (\frac {\log (256)}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {x \log (256)}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {2 \log (1+x)}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {2 x \log (1+x)}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {3}{(-1-x) \log (-3+2 x) \log ^2(16+16 x)}+\frac {2 x}{(1+x) \log (-3+2 x) \log ^2(16+16 x)}\right ) \, dx+\frac {6}{5} \int \left (\frac {\log (256)}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {x \log (256)}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {2 \log (1+x)}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {2 x \log (1+x)}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {2 x}{(3-2 x) \log (-3+2 x) \log ^2(16+16 x)}+\frac {3}{(-3+2 x) \log (-3+2 x) \log ^2(16+16 x)}\right ) \, dx\\ &=\frac {6}{5} \int \frac {\log (1+x)}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {6}{5} \int \frac {x \log (1+x)}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {6}{5} \int \frac {x}{(1+x) \log (-3+2 x) \log ^2(16+16 x)} \, dx+\frac {9}{5} \int \frac {1}{(-1-x) \log (-3+2 x) \log ^2(16+16 x)} \, dx+\frac {12}{5} \int \frac {\log (1+x)}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {12}{5} \int \frac {x \log (1+x)}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {12}{5} \int \frac {x}{(3-2 x) \log (-3+2 x) \log ^2(16+16 x)} \, dx+\frac {18}{5} \int \frac {1}{(-3+2 x) \log (-3+2 x) \log ^2(16+16 x)} \, dx+\frac {1}{5} (3 \log (256)) \int \frac {1}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {1}{5} (3 \log (256)) \int \frac {x}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {1}{5} (6 \log (256)) \int \frac {1}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {1}{5} (6 \log (256)) \int \frac {x}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx\\ &=\frac {6}{5} \int \left (\frac {\log (1+x)}{\log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {\log (1+x)}{(-1-x) \log ^2(-3+2 x) \log ^2(16+16 x)}\right ) \, dx+\frac {6}{5} \int \left (\frac {1}{\log (-3+2 x) \log ^2(16+16 x)}+\frac {1}{(-1-x) \log (-3+2 x) \log ^2(16+16 x)}\right ) \, dx+\frac {6}{5} \int \frac {\log (1+x)}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {9}{5} \int \frac {1}{(-1-x) \log (-3+2 x) \log ^2(16+16 x)} \, dx+\frac {12}{5} \int \left (-\frac {\log (1+x)}{2 \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {3 \log (1+x)}{2 (3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)}\right ) \, dx+\frac {12}{5} \int \left (-\frac {1}{2 \log (-3+2 x) \log ^2(16+16 x)}+\frac {3}{2 (3-2 x) \log (-3+2 x) \log ^2(16+16 x)}\right ) \, dx+\frac {12}{5} \int \frac {\log (1+x)}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {18}{5} \int \frac {1}{(-3+2 x) \log (-3+2 x) \log ^2(16+16 x)} \, dx+\frac {1}{5} (3 \log (256)) \int \left (\frac {1}{\log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {1}{(-1-x) \log ^2(-3+2 x) \log ^2(16+16 x)}\right ) \, dx+\frac {1}{5} (3 \log (256)) \int \frac {1}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {1}{5} (6 \log (256)) \int \left (-\frac {1}{2 \log ^2(-3+2 x) \log ^2(16+16 x)}+\frac {3}{2 (3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)}\right ) \, dx+\frac {1}{5} (6 \log (256)) \int \frac {1}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx\\ &=\frac {6}{5} \int \frac {\log (1+x)}{(-1-x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {6}{5} \int \frac {\log (1+x)}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {6}{5} \int \frac {1}{(-1-x) \log (-3+2 x) \log ^2(16+16 x)} \, dx+\frac {9}{5} \int \frac {1}{(-1-x) \log (-3+2 x) \log ^2(16+16 x)} \, dx+\frac {12}{5} \int \frac {\log (1+x)}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {18}{5} \int \frac {\log (1+x)}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {18}{5} \int \frac {1}{(3-2 x) \log (-3+2 x) \log ^2(16+16 x)} \, dx+\frac {18}{5} \int \frac {1}{(-3+2 x) \log (-3+2 x) \log ^2(16+16 x)} \, dx+\frac {1}{5} (3 \log (256)) \int \frac {1}{(-1-x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {1}{5} (3 \log (256)) \int \frac {1}{(1+x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {1}{5} (6 \log (256)) \int \frac {1}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx+\frac {1}{5} (9 \log (256)) \int \frac {1}{(3-2 x) \log ^2(-3+2 x) \log ^2(16+16 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 29, normalized size = 1.53 \begin {gather*} \frac {3 (\log (256)+2 \log (1+x))}{2 \log ^2(16 (1+x)) \log (-3+2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 21, normalized size = 1.11 \begin {gather*} \frac {3}{{\left (4 \, \log \relax (2) + \log \left (x + 1\right )\right )} \log \left (2 \, x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 26, normalized size = 1.37 \begin {gather*} \frac {3}{4 \, \log \relax (2) \log \left (2 \, x - 3\right ) + \log \left (2 \, x - 3\right ) \log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 22, normalized size = 1.16
method | result | size |
risch | \(\frac {3}{\left (\ln \left (x +1\right )+4 \ln \relax (2)\right ) \ln \left (2 x -3\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 21, normalized size = 1.11 \begin {gather*} \frac {3}{{\left (4 \, \log \relax (2) + \log \left (x + 1\right )\right )} \log \left (2 \, x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.69, size = 194, normalized size = 10.21 \begin {gather*} \frac {15}{4\,\left (x+1\right )}-\frac {\frac {15\,\left (4\,\ln \relax (2)+1\right )}{4\,\left (x+1\right )}+\frac {15\,\ln \left (x+1\right )}{4\,\left (x+1\right )}}{\ln \left (x+1\right )+4\,\ln \relax (2)}+\frac {\frac {3}{\ln \left (x+1\right )+4\,\ln \relax (2)}+\frac {3\,\ln \left (2\,x-3\right )\,\left (2\,x-3\right )}{2\,\left (8\,\ln \left (x+1\right )\,\ln \relax (2)+x\,{\ln \left (x+1\right )}^2+16\,x\,{\ln \relax (2)}^2+{\ln \left (x+1\right )}^2+16\,{\ln \relax (2)}^2+8\,x\,\ln \left (x+1\right )\,\ln \relax (2)\right )}}{\ln \left (2\,x-3\right )}+\frac {\frac {3\,\left (10\,\ln \relax (2)-2\,x+3\right )}{2\,\left (x+1\right )}+\frac {15\,\ln \left (x+1\right )}{4\,\left (x+1\right )}}{{\ln \left (x+1\right )}^2+8\,\ln \relax (2)\,\ln \left (x+1\right )+16\,{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 17, normalized size = 0.89 \begin {gather*} \frac {3}{\left (\log {\left (x + 1 \right )} + 4 \log {\relax (2 )}\right ) \log {\left (2 x - 3 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________