Optimal. Leaf size=31 \[ \log \left (\frac {1}{\log \left (e^{2 x} x^2\right ) \log ^2\left (-x+\frac {1}{3-\frac {2}{x}+x}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-12+24 x-12 x^2-12 x^3-2 x^4\right ) \log \left (e^{2 x} x^2\right )+\left (-12+18 x+22 x^2-20 x^3-14 x^4-2 x^5\right ) \log \left (\frac {3 x-3 x^2-x^3}{-2+3 x+x^2}\right )}{\left (6 x-15 x^2+4 x^3+6 x^4+x^5\right ) \log \left (e^{2 x} x^2\right ) \log \left (\frac {3 x-3 x^2-x^3}{-2+3 x+x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-\frac {6-9 x-11 x^2+10 x^3+7 x^4+x^5}{\log \left (e^{2 x} x^2\right )}-\frac {6-12 x+6 x^2+6 x^3+x^4}{\log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}\right )}{x \left (6-15 x+4 x^2+6 x^3+x^4\right )} \, dx\\ &=2 \int \frac {-\frac {6-9 x-11 x^2+10 x^3+7 x^4+x^5}{\log \left (e^{2 x} x^2\right )}-\frac {6-12 x+6 x^2+6 x^3+x^4}{\log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}}{x \left (6-15 x+4 x^2+6 x^3+x^4\right )} \, dx\\ &=2 \int \left (\frac {-1-x}{x \log \left (e^{2 x} x^2\right )}+\frac {-6+12 x-6 x^2-6 x^3-x^4}{x \left (-3+3 x+x^2\right ) \left (-2+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}\right ) \, dx\\ &=2 \int \frac {-1-x}{x \log \left (e^{2 x} x^2\right )} \, dx+2 \int \frac {-6+12 x-6 x^2-6 x^3-x^4}{x \left (-3+3 x+x^2\right ) \left (-2+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx\\ &=-\log \left (\log \left (e^{2 x} x^2\right )\right )+2 \int \left (-\frac {1}{x \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}+\frac {-3-2 x}{\left (-3+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}+\frac {3+2 x}{\left (-2+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}\right ) \, dx\\ &=-\log \left (\log \left (e^{2 x} x^2\right )\right )-2 \int \frac {1}{x \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx+2 \int \frac {-3-2 x}{\left (-3+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx+2 \int \frac {3+2 x}{\left (-2+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx\\ &=-\log \left (\log \left (e^{2 x} x^2\right )\right )+2 \int \left (-\frac {3}{\left (-3+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}-\frac {2 x}{\left (-3+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}\right ) \, dx+2 \int \left (\frac {3}{\left (-2+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}+\frac {2 x}{\left (-2+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}\right ) \, dx-2 \int \frac {1}{x \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx\\ &=-\log \left (\log \left (e^{2 x} x^2\right )\right )-2 \int \frac {1}{x \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx-4 \int \frac {x}{\left (-3+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx+4 \int \frac {x}{\left (-2+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx-6 \int \frac {1}{\left (-3+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx+6 \int \frac {1}{\left (-2+3 x+x^2\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx\\ &=-\log \left (\log \left (e^{2 x} x^2\right )\right )-2 \int \frac {1}{x \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx+4 \int \left (\frac {1-\frac {3}{\sqrt {17}}}{\left (3-\sqrt {17}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}+\frac {1+\frac {3}{\sqrt {17}}}{\left (3+\sqrt {17}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}\right ) \, dx-4 \int \left (\frac {1-\sqrt {\frac {3}{7}}}{\left (3-\sqrt {21}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}+\frac {1+\sqrt {\frac {3}{7}}}{\left (3+\sqrt {21}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}\right ) \, dx+6 \int \left (-\frac {2}{\sqrt {17} \left (-3+\sqrt {17}-2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}-\frac {2}{\sqrt {17} \left (3+\sqrt {17}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}\right ) \, dx-6 \int \left (-\frac {2}{\sqrt {21} \left (-3+\sqrt {21}-2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}-\frac {2}{\sqrt {21} \left (3+\sqrt {21}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )}\right ) \, dx\\ &=-\log \left (\log \left (e^{2 x} x^2\right )\right )-2 \int \frac {1}{x \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx+\left (4 \sqrt {\frac {3}{7}}\right ) \int \frac {1}{\left (-3+\sqrt {21}-2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx+\left (4 \sqrt {\frac {3}{7}}\right ) \int \frac {1}{\left (3+\sqrt {21}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx-\frac {12 \int \frac {1}{\left (-3+\sqrt {17}-2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx}{\sqrt {17}}-\frac {12 \int \frac {1}{\left (3+\sqrt {17}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx}{\sqrt {17}}+\frac {1}{17} \left (4 \left (17-3 \sqrt {17}\right )\right ) \int \frac {1}{\left (3-\sqrt {17}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx+\frac {1}{17} \left (4 \left (17+3 \sqrt {17}\right )\right ) \int \frac {1}{\left (3+\sqrt {17}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx-\frac {1}{7} \left (4 \left (7-\sqrt {21}\right )\right ) \int \frac {1}{\left (3-\sqrt {21}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx-\frac {1}{7} \left (4 \left (7+\sqrt {21}\right )\right ) \int \frac {1}{\left (3+\sqrt {21}+2 x\right ) \log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 43, normalized size = 1.39 \begin {gather*} 2 \left (-\frac {1}{2} \log \left (\log \left (e^{2 x} x^2\right )\right )-\log \left (\log \left (-\frac {x \left (-3+3 x+x^2\right )}{-2+3 x+x^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 41, normalized size = 1.32 \begin {gather*} -\log \left (\log \left (x^{2} e^{\left (2 \, x\right )}\right )\right ) - 2 \, \log \left (\log \left (-\frac {x^{3} + 3 \, x^{2} - 3 \, x}{x^{2} + 3 \, x - 2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 36, normalized size = 1.16 \begin {gather*} -\log \left (x + \log \relax (x)\right ) - 2 \, \log \left (-\log \left (x^{2} + 3 \, x - 2\right ) + \log \left (-x^{2} - 3 \, x + 3\right ) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.67, size = 43, normalized size = 1.39
method | result | size |
default | \(-\ln \left (\ln \left ({\mathrm e}^{2 x} x^{2}\right )\right )-2 \ln \left (\ln \left (\frac {-x^{3}-3 x^{2}+3 x}{x^{2}+3 x -2}\right )\right )\) | \(43\) |
risch | \(-2 \ln \left (\ln \left (x^{2}+3 x -2\right )+\frac {i \left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right ) \mathrm {csgn}\left (\frac {i x \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i x \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (x^{2}+3 x -3\right )\right ) \mathrm {csgn}\left (\frac {i}{x^{2}+3 x -2}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right )-\pi \,\mathrm {csgn}\left (i \left (x^{2}+3 x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{x^{2}+3 x -2}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right ) \mathrm {csgn}\left (\frac {i x \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i x \left (x^{2}+3 x -3\right )}{x^{2}+3 x -2}\right )^{3}+2 i \ln \relax (x )+2 i \ln \left (x^{2}+3 x -3\right )-2 \pi \right )}{2}\right )-\ln \left (\ln \left ({\mathrm e}^{x}\right )-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-2 \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )^{3}+4 i \ln \relax (x )\right )}{4}\right )\) | \(585\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 36, normalized size = 1.16 \begin {gather*} -\log \left (x + \log \relax (x)\right ) - 2 \, \log \left (-\log \left (x^{2} + 3 \, x - 2\right ) + \log \left (-x^{2} - 3 \, x + 3\right ) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.21, size = 40, normalized size = 1.29 \begin {gather*} -\ln \left (2\,x+\ln \left (x^2\right )\right )-2\,\ln \left (\ln \left (-\frac {x^3+3\,x^2-3\,x}{x^2+3\,x-2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.96, size = 37, normalized size = 1.19 \begin {gather*} - \log {\left (\log {\left (x^{2} e^{2 x} \right )} \right )} - 2 \log {\left (\log {\left (\frac {- x^{3} - 3 x^{2} + 3 x}{x^{2} + 3 x - 2} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________