Optimal. Leaf size=17 \[ e^{-2+e^x} (3+2 x)^4 \log (9) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 30, normalized size of antiderivative = 1.76, number of steps used = 1, number of rules used = 1, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {2288} \begin {gather*} e^{e^x-2} \left (16 x^4+96 x^3+216 x^2+216 x+81\right ) \log (9) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{-2+e^x} \left (81+216 x+216 x^2+96 x^3+16 x^4\right ) \log (9)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 17, normalized size = 1.00 \begin {gather*} e^{-2+e^x} (3+2 x)^4 \log (9) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 29, normalized size = 1.71 \begin {gather*} 2 \, {\left (16 \, x^{4} + 96 \, x^{3} + 216 \, x^{2} + 216 \, x + 81\right )} e^{\left (e^{x} - 2\right )} \log \relax (3) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 64, normalized size = 3.76 \begin {gather*} 2 \, {\left (16 \, x^{4} e^{\left (x + e^{x}\right )} \log \relax (3) + 96 \, x^{3} e^{\left (x + e^{x}\right )} \log \relax (3) + 216 \, x^{2} e^{\left (x + e^{x}\right )} \log \relax (3) + 216 \, x e^{\left (x + e^{x}\right )} \log \relax (3) + 81 \, e^{\left (x + e^{x}\right )} \log \relax (3)\right )} e^{\left (-x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.76
method | result | size |
risch | \(2 \left (16 x^{4}+96 x^{3}+216 x^{2}+216 x +81\right ) \ln \relax (3) {\mathrm e}^{{\mathrm e}^{x}-2}\) | \(30\) |
norman | \(162 \,{\mathrm e}^{-2} \ln \relax (3) {\mathrm e}^{{\mathrm e}^{x}}+432 \,{\mathrm e}^{-2} \ln \relax (3) x \,{\mathrm e}^{{\mathrm e}^{x}}+432 \,{\mathrm e}^{-2} \ln \relax (3) x^{2} {\mathrm e}^{{\mathrm e}^{x}}+192 \,{\mathrm e}^{-2} \ln \relax (3) x^{3} {\mathrm e}^{{\mathrm e}^{x}}+32 \,{\mathrm e}^{-2} \ln \relax (3) x^{4} {\mathrm e}^{{\mathrm e}^{x}}\) | \(67\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 432 \, {\rm Ei}\left (e^{x}\right ) e^{\left (-2\right )} \log \relax (3) - 432 \, e^{\left (-2\right )} \int e^{\left (e^{x}\right )}\,{d x} \log \relax (3) + 2 \, {\left (16 \, x^{4} \log \relax (3) + 96 \, x^{3} \log \relax (3) + 216 \, x^{2} \log \relax (3) + 216 \, x \log \relax (3) + 81 \, \log \relax (3)\right )} e^{\left (e^{x} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.28, size = 16, normalized size = 0.94 \begin {gather*} 2\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{-2}\,\ln \relax (3)\,{\left (2\,x+3\right )}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.26, size = 44, normalized size = 2.59 \begin {gather*} \frac {\left (32 x^{4} \log {\relax (3 )} + 192 x^{3} \log {\relax (3 )} + 432 x^{2} \log {\relax (3 )} + 432 x \log {\relax (3 )} + 162 \log {\relax (3 )}\right ) e^{e^{x}}}{e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________