3.39.48 \(\int e^{-2+e^x} ((216+432 x+288 x^2+64 x^3) \log (9)+e^x (81+216 x+216 x^2+96 x^3+16 x^4) \log (9)) \, dx\)

Optimal. Leaf size=17 \[ e^{-2+e^x} (3+2 x)^4 \log (9) \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 30, normalized size of antiderivative = 1.76, number of steps used = 1, number of rules used = 1, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {2288} \begin {gather*} e^{e^x-2} \left (16 x^4+96 x^3+216 x^2+216 x+81\right ) \log (9) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(-2 + E^x)*((216 + 432*x + 288*x^2 + 64*x^3)*Log[9] + E^x*(81 + 216*x + 216*x^2 + 96*x^3 + 16*x^4)*Log[9
]),x]

[Out]

E^(-2 + E^x)*(81 + 216*x + 216*x^2 + 96*x^3 + 16*x^4)*Log[9]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=e^{-2+e^x} \left (81+216 x+216 x^2+96 x^3+16 x^4\right ) \log (9)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 17, normalized size = 1.00 \begin {gather*} e^{-2+e^x} (3+2 x)^4 \log (9) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(-2 + E^x)*((216 + 432*x + 288*x^2 + 64*x^3)*Log[9] + E^x*(81 + 216*x + 216*x^2 + 96*x^3 + 16*x^4)
*Log[9]),x]

[Out]

E^(-2 + E^x)*(3 + 2*x)^4*Log[9]

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 29, normalized size = 1.71 \begin {gather*} 2 \, {\left (16 \, x^{4} + 96 \, x^{3} + 216 \, x^{2} + 216 \, x + 81\right )} e^{\left (e^{x} - 2\right )} \log \relax (3) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(16*x^4+96*x^3+216*x^2+216*x+81)*log(3)*exp(x)+2*(64*x^3+288*x^2+432*x+216)*log(3))*exp(exp(x))/e
xp(2),x, algorithm="fricas")

[Out]

2*(16*x^4 + 96*x^3 + 216*x^2 + 216*x + 81)*e^(e^x - 2)*log(3)

________________________________________________________________________________________

giac [B]  time = 0.15, size = 64, normalized size = 3.76 \begin {gather*} 2 \, {\left (16 \, x^{4} e^{\left (x + e^{x}\right )} \log \relax (3) + 96 \, x^{3} e^{\left (x + e^{x}\right )} \log \relax (3) + 216 \, x^{2} e^{\left (x + e^{x}\right )} \log \relax (3) + 216 \, x e^{\left (x + e^{x}\right )} \log \relax (3) + 81 \, e^{\left (x + e^{x}\right )} \log \relax (3)\right )} e^{\left (-x - 2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(16*x^4+96*x^3+216*x^2+216*x+81)*log(3)*exp(x)+2*(64*x^3+288*x^2+432*x+216)*log(3))*exp(exp(x))/e
xp(2),x, algorithm="giac")

[Out]

2*(16*x^4*e^(x + e^x)*log(3) + 96*x^3*e^(x + e^x)*log(3) + 216*x^2*e^(x + e^x)*log(3) + 216*x*e^(x + e^x)*log(
3) + 81*e^(x + e^x)*log(3))*e^(-x - 2)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 30, normalized size = 1.76




method result size



risch \(2 \left (16 x^{4}+96 x^{3}+216 x^{2}+216 x +81\right ) \ln \relax (3) {\mathrm e}^{{\mathrm e}^{x}-2}\) \(30\)
norman \(162 \,{\mathrm e}^{-2} \ln \relax (3) {\mathrm e}^{{\mathrm e}^{x}}+432 \,{\mathrm e}^{-2} \ln \relax (3) x \,{\mathrm e}^{{\mathrm e}^{x}}+432 \,{\mathrm e}^{-2} \ln \relax (3) x^{2} {\mathrm e}^{{\mathrm e}^{x}}+192 \,{\mathrm e}^{-2} \ln \relax (3) x^{3} {\mathrm e}^{{\mathrm e}^{x}}+32 \,{\mathrm e}^{-2} \ln \relax (3) x^{4} {\mathrm e}^{{\mathrm e}^{x}}\) \(67\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*(16*x^4+96*x^3+216*x^2+216*x+81)*ln(3)*exp(x)+2*(64*x^3+288*x^2+432*x+216)*ln(3))*exp(exp(x))/exp(2),x,
method=_RETURNVERBOSE)

[Out]

2*(16*x^4+96*x^3+216*x^2+216*x+81)*ln(3)*exp(exp(x)-2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 432 \, {\rm Ei}\left (e^{x}\right ) e^{\left (-2\right )} \log \relax (3) - 432 \, e^{\left (-2\right )} \int e^{\left (e^{x}\right )}\,{d x} \log \relax (3) + 2 \, {\left (16 \, x^{4} \log \relax (3) + 96 \, x^{3} \log \relax (3) + 216 \, x^{2} \log \relax (3) + 216 \, x \log \relax (3) + 81 \, \log \relax (3)\right )} e^{\left (e^{x} - 2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(16*x^4+96*x^3+216*x^2+216*x+81)*log(3)*exp(x)+2*(64*x^3+288*x^2+432*x+216)*log(3))*exp(exp(x))/e
xp(2),x, algorithm="maxima")

[Out]

432*Ei(e^x)*e^(-2)*log(3) - 432*e^(-2)*integrate(e^(e^x), x)*log(3) + 2*(16*x^4*log(3) + 96*x^3*log(3) + 216*x
^2*log(3) + 216*x*log(3) + 81*log(3))*e^(e^x - 2)

________________________________________________________________________________________

mupad [B]  time = 2.28, size = 16, normalized size = 0.94 \begin {gather*} 2\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{-2}\,\ln \relax (3)\,{\left (2\,x+3\right )}^4 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(exp(x))*exp(-2)*(2*log(3)*(432*x + 288*x^2 + 64*x^3 + 216) + 2*exp(x)*log(3)*(216*x + 216*x^2 + 96*x^3
 + 16*x^4 + 81)),x)

[Out]

2*exp(exp(x))*exp(-2)*log(3)*(2*x + 3)^4

________________________________________________________________________________________

sympy [B]  time = 0.26, size = 44, normalized size = 2.59 \begin {gather*} \frac {\left (32 x^{4} \log {\relax (3 )} + 192 x^{3} \log {\relax (3 )} + 432 x^{2} \log {\relax (3 )} + 432 x \log {\relax (3 )} + 162 \log {\relax (3 )}\right ) e^{e^{x}}}{e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(16*x**4+96*x**3+216*x**2+216*x+81)*ln(3)*exp(x)+2*(64*x**3+288*x**2+432*x+216)*ln(3))*exp(exp(x)
)/exp(2),x)

[Out]

(32*x**4*log(3) + 192*x**3*log(3) + 432*x**2*log(3) + 432*x*log(3) + 162*log(3))*exp(-2)*exp(exp(x))

________________________________________________________________________________________