Optimal. Leaf size=35 \[ \frac {x}{3}+\frac {1}{3} (5+x) \left (3-\frac {e^{-6-2 x} (3-\log (x))^2}{x^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-6-2 x} \left (120+105 x+18 x^2+4 e^{6+2 x} x^3+\left (-70-68 x-12 x^2\right ) \log (x)+\left (10+11 x+2 x^2\right ) \log ^2(x)\right )}{3 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-6-2 x} \left (120+105 x+18 x^2+4 e^{6+2 x} x^3+\left (-70-68 x-12 x^2\right ) \log (x)+\left (10+11 x+2 x^2\right ) \log ^2(x)\right )}{x^3} \, dx\\ &=\frac {1}{3} \int \left (4+\frac {e^{-6-2 x} (-3+\log (x)) \left (-40-35 x-6 x^2+10 \log (x)+11 x \log (x)+2 x^2 \log (x)\right )}{x^3}\right ) \, dx\\ &=\frac {4 x}{3}+\frac {1}{3} \int \frac {e^{-6-2 x} (-3+\log (x)) \left (-40-35 x-6 x^2+10 \log (x)+11 x \log (x)+2 x^2 \log (x)\right )}{x^3} \, dx\\ &=\frac {4 x}{3}+\frac {1}{3} \int \left (\frac {3 e^{-6-2 x} \left (40+35 x+6 x^2\right )}{x^3}-\frac {2 e^{-6-2 x} \left (35+34 x+6 x^2\right ) \log (x)}{x^3}+\frac {e^{-6-2 x} \left (10+11 x+2 x^2\right ) \log ^2(x)}{x^3}\right ) \, dx\\ &=\frac {4 x}{3}+\frac {1}{3} \int \frac {e^{-6-2 x} \left (10+11 x+2 x^2\right ) \log ^2(x)}{x^3} \, dx-\frac {2}{3} \int \frac {e^{-6-2 x} \left (35+34 x+6 x^2\right ) \log (x)}{x^3} \, dx+\int \frac {e^{-6-2 x} \left (40+35 x+6 x^2\right )}{x^3} \, dx\\ &=\frac {4 x}{3}+\frac {35 e^{-6-2 x} \log (x)}{3 x^2}-\frac {2 e^{-6-2 x} \log (x)}{3 x}-\frac {16 \text {Ei}(-2 x) \log (x)}{3 e^6}+\frac {1}{3} \int \left (\frac {10 e^{-6-2 x} \log ^2(x)}{x^3}+\frac {11 e^{-6-2 x} \log ^2(x)}{x^2}+\frac {2 e^{-6-2 x} \log ^2(x)}{x}\right ) \, dx+\frac {2}{3} \int \frac {e^{-6-2 x} \left (-35+2 x+16 e^{2 x} x^2 \text {Ei}(-2 x)\right )}{2 x^3} \, dx+\int \left (\frac {40 e^{-6-2 x}}{x^3}+\frac {35 e^{-6-2 x}}{x^2}+\frac {6 e^{-6-2 x}}{x}\right ) \, dx\\ &=\frac {4 x}{3}+\frac {35 e^{-6-2 x} \log (x)}{3 x^2}-\frac {2 e^{-6-2 x} \log (x)}{3 x}-\frac {16 \text {Ei}(-2 x) \log (x)}{3 e^6}+\frac {1}{3} \int \frac {e^{-6-2 x} \left (-35+2 x+16 e^{2 x} x^2 \text {Ei}(-2 x)\right )}{x^3} \, dx+\frac {2}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x} \, dx+\frac {10}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^3} \, dx+\frac {11}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^2} \, dx+6 \int \frac {e^{-6-2 x}}{x} \, dx+35 \int \frac {e^{-6-2 x}}{x^2} \, dx+40 \int \frac {e^{-6-2 x}}{x^3} \, dx\\ &=-\frac {20 e^{-6-2 x}}{x^2}-\frac {35 e^{-6-2 x}}{x}+\frac {4 x}{3}+\frac {6 \text {Ei}(-2 x)}{e^6}+\frac {35 e^{-6-2 x} \log (x)}{3 x^2}-\frac {2 e^{-6-2 x} \log (x)}{3 x}-\frac {16 \text {Ei}(-2 x) \log (x)}{3 e^6}+\frac {1}{3} \int \left (\frac {e^{-6-2 x} (-35+2 x)}{x^3}+\frac {16 \text {Ei}(-2 x)}{e^6 x}\right ) \, dx+\frac {2}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x} \, dx+\frac {10}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^3} \, dx+\frac {11}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^2} \, dx-40 \int \frac {e^{-6-2 x}}{x^2} \, dx-70 \int \frac {e^{-6-2 x}}{x} \, dx\\ &=-\frac {20 e^{-6-2 x}}{x^2}+\frac {5 e^{-6-2 x}}{x}+\frac {4 x}{3}-\frac {64 \text {Ei}(-2 x)}{e^6}+\frac {35 e^{-6-2 x} \log (x)}{3 x^2}-\frac {2 e^{-6-2 x} \log (x)}{3 x}-\frac {16 \text {Ei}(-2 x) \log (x)}{3 e^6}+\frac {1}{3} \int \frac {e^{-6-2 x} (-35+2 x)}{x^3} \, dx+\frac {2}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x} \, dx+\frac {10}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^3} \, dx+\frac {11}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^2} \, dx+80 \int \frac {e^{-6-2 x}}{x} \, dx+\frac {16 \int \frac {\text {Ei}(-2 x)}{x} \, dx}{3 e^6}\\ &=-\frac {20 e^{-6-2 x}}{x^2}+\frac {5 e^{-6-2 x}}{x}+\frac {4 x}{3}+\frac {16 \text {Ei}(-2 x)}{e^6}+\frac {35 e^{-6-2 x} \log (x)}{3 x^2}-\frac {2 e^{-6-2 x} \log (x)}{3 x}-\frac {16 \text {Ei}(-2 x) \log (x)}{3 e^6}+\frac {16 (E_1(2 x)+\text {Ei}(-2 x)) \log (x)}{3 e^6}+\frac {1}{3} \int \left (-\frac {35 e^{-6-2 x}}{x^3}+\frac {2 e^{-6-2 x}}{x^2}\right ) \, dx+\frac {2}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x} \, dx+\frac {10}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^3} \, dx+\frac {11}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^2} \, dx-\frac {16 \int \frac {E_1(2 x)}{x} \, dx}{3 e^6}\\ &=-\frac {20 e^{-6-2 x}}{x^2}+\frac {5 e^{-6-2 x}}{x}+\frac {4 x}{3}+\frac {16 \text {Ei}(-2 x)}{e^6}-\frac {32 x \, _3F_3(1,1,1;2,2,2;-2 x)}{3 e^6}+\frac {16 \gamma \log (x)}{3 e^6}+\frac {35 e^{-6-2 x} \log (x)}{3 x^2}-\frac {2 e^{-6-2 x} \log (x)}{3 x}-\frac {16 \text {Ei}(-2 x) \log (x)}{3 e^6}+\frac {16 (E_1(2 x)+\text {Ei}(-2 x)) \log (x)}{3 e^6}+\frac {8 \log ^2(2 x)}{3 e^6}+\frac {2}{3} \int \frac {e^{-6-2 x}}{x^2} \, dx+\frac {2}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x} \, dx+\frac {10}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^3} \, dx+\frac {11}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^2} \, dx-\frac {35}{3} \int \frac {e^{-6-2 x}}{x^3} \, dx\\ &=-\frac {85 e^{-6-2 x}}{6 x^2}+\frac {13 e^{-6-2 x}}{3 x}+\frac {4 x}{3}+\frac {16 \text {Ei}(-2 x)}{e^6}-\frac {32 x \, _3F_3(1,1,1;2,2,2;-2 x)}{3 e^6}+\frac {16 \gamma \log (x)}{3 e^6}+\frac {35 e^{-6-2 x} \log (x)}{3 x^2}-\frac {2 e^{-6-2 x} \log (x)}{3 x}-\frac {16 \text {Ei}(-2 x) \log (x)}{3 e^6}+\frac {16 (E_1(2 x)+\text {Ei}(-2 x)) \log (x)}{3 e^6}+\frac {8 \log ^2(2 x)}{3 e^6}+\frac {2}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x} \, dx-\frac {4}{3} \int \frac {e^{-6-2 x}}{x} \, dx+\frac {10}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^3} \, dx+\frac {11}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^2} \, dx+\frac {35}{3} \int \frac {e^{-6-2 x}}{x^2} \, dx\\ &=-\frac {85 e^{-6-2 x}}{6 x^2}-\frac {22 e^{-6-2 x}}{3 x}+\frac {4 x}{3}+\frac {44 \text {Ei}(-2 x)}{3 e^6}-\frac {32 x \, _3F_3(1,1,1;2,2,2;-2 x)}{3 e^6}+\frac {16 \gamma \log (x)}{3 e^6}+\frac {35 e^{-6-2 x} \log (x)}{3 x^2}-\frac {2 e^{-6-2 x} \log (x)}{3 x}-\frac {16 \text {Ei}(-2 x) \log (x)}{3 e^6}+\frac {16 (E_1(2 x)+\text {Ei}(-2 x)) \log (x)}{3 e^6}+\frac {8 \log ^2(2 x)}{3 e^6}+\frac {2}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x} \, dx+\frac {10}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^3} \, dx+\frac {11}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^2} \, dx-\frac {70}{3} \int \frac {e^{-6-2 x}}{x} \, dx\\ &=-\frac {85 e^{-6-2 x}}{6 x^2}-\frac {22 e^{-6-2 x}}{3 x}+\frac {4 x}{3}-\frac {26 \text {Ei}(-2 x)}{3 e^6}-\frac {32 x \, _3F_3(1,1,1;2,2,2;-2 x)}{3 e^6}+\frac {16 \gamma \log (x)}{3 e^6}+\frac {35 e^{-6-2 x} \log (x)}{3 x^2}-\frac {2 e^{-6-2 x} \log (x)}{3 x}-\frac {16 \text {Ei}(-2 x) \log (x)}{3 e^6}+\frac {16 (E_1(2 x)+\text {Ei}(-2 x)) \log (x)}{3 e^6}+\frac {8 \log ^2(2 x)}{3 e^6}+\frac {2}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x} \, dx+\frac {10}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^3} \, dx+\frac {11}{3} \int \frac {e^{-6-2 x} \log ^2(x)}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.95, size = 47, normalized size = 1.34 \begin {gather*} \frac {e^{-2 (3+x)} \left (-45-9 x+4 e^{6+2 x} x^3+6 (5+x) \log (x)-(5+x) \log ^2(x)\right )}{3 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 43, normalized size = 1.23 \begin {gather*} \frac {{\left (4 \, x^{3} e^{\left (2 \, x + 6\right )} - {\left (x + 5\right )} \log \relax (x)^{2} + 6 \, {\left (x + 5\right )} \log \relax (x) - 9 \, x - 45\right )} e^{\left (-2 \, x - 6\right )}}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 66, normalized size = 1.89 \begin {gather*} \frac {{\left (4 \, x^{3} e^{6} - x e^{\left (-2 \, x\right )} \log \relax (x)^{2} + 6 \, x e^{\left (-2 \, x\right )} \log \relax (x) - 5 \, e^{\left (-2 \, x\right )} \log \relax (x)^{2} - 9 \, x e^{\left (-2 \, x\right )} + 30 \, e^{\left (-2 \, x\right )} \log \relax (x) - 45 \, e^{\left (-2 \, x\right )}\right )} e^{\left (-6\right )}}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 63, normalized size = 1.80
method | result | size |
risch | \(-\frac {\left (5+x \right ) {\mathrm e}^{-2 x -6} \ln \relax (x )^{2}}{3 x^{2}}+\frac {2 \left (5+x \right ) {\mathrm e}^{-2 x -6} \ln \relax (x )}{x^{2}}+\frac {\left (4 x^{3} {\mathrm e}^{2 x +6}-9 x -45\right ) {\mathrm e}^{-2 x -6}}{3 x^{2}}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 6 \, {\rm Ei}\left (-2 \, x\right ) e^{\left (-6\right )} - 70 \, e^{\left (-6\right )} \Gamma \left (-1, 2 \, x\right ) - 160 \, e^{\left (-6\right )} \Gamma \left (-2, 2 \, x\right ) + \frac {4}{3} \, x - \frac {{\left ({\left (x + 5\right )} \log \relax (x)^{2} - 6 \, {\left (x + 5\right )} \log \relax (x)\right )} e^{\left (-2 \, x - 6\right )}}{3 \, x^{2}} - \frac {1}{3} \, \int \frac {6 \, {\left (x + 5\right )} e^{\left (-2 \, x - 6\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.32, size = 49, normalized size = 1.40 \begin {gather*} \frac {4\,x}{3}-\frac {\frac {{\mathrm {e}}^{-2\,x-6}\,\left (5\,{\ln \relax (x)}^2-30\,\ln \relax (x)+45\right )}{3}+\frac {x\,{\mathrm {e}}^{-2\,x-6}\,\left ({\ln \relax (x)}^2-6\,\ln \relax (x)+9\right )}{3}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 48, normalized size = 1.37 \begin {gather*} \frac {4 x}{3} + \frac {\left (- x \log {\relax (x )}^{2} + 6 x \log {\relax (x )} - 9 x - 5 \log {\relax (x )}^{2} + 30 \log {\relax (x )} - 45\right ) e^{- 2 x - 6}}{3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________