Optimal. Leaf size=24 \[ \frac {4 e^{-2 x^2}}{\left (5 x+e^x x+\log ^2(x)\right )^4} \]
________________________________________________________________________________________
Rubi [F] time = 5.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-80 x-80 x^3+e^x \left (-16 x-16 x^2-16 x^3\right )-32 \log (x)-16 x^2 \log ^2(x)}{e^{2 x^2} \left (3125 x^6+3125 e^x x^6+1250 e^{2 x} x^6+250 e^{3 x} x^6+25 e^{4 x} x^6+e^{5 x} x^6\right )+e^{2 x^2} \left (3125 x^5+2500 e^x x^5+750 e^{2 x} x^5+100 e^{3 x} x^5+5 e^{4 x} x^5\right ) \log ^2(x)+e^{2 x^2} \left (1250 x^4+750 e^x x^4+150 e^{2 x} x^4+10 e^{3 x} x^4\right ) \log ^4(x)+e^{2 x^2} \left (250 x^3+100 e^x x^3+10 e^{2 x} x^3\right ) \log ^6(x)+e^{2 x^2} \left (25 x^2+5 e^x x^2\right ) \log ^8(x)+e^{2 x^2} x \log ^{10}(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 e^{-2 x^2} \left (-5 x \left (1+x^2\right )-e^x x \left (1+x+x^2\right )-2 \log (x)-x^2 \log ^2(x)\right )}{x \left (\left (5+e^x\right ) x+\log ^2(x)\right )^5} \, dx\\ &=16 \int \frac {e^{-2 x^2} \left (-5 x \left (1+x^2\right )-e^x x \left (1+x+x^2\right )-2 \log (x)-x^2 \log ^2(x)\right )}{x \left (\left (5+e^x\right ) x+\log ^2(x)\right )^5} \, dx\\ &=16 \int \left (-\frac {e^{-2 x^2} \left (1+x+x^2\right )}{x \left (5 x+e^x x+\log ^2(x)\right )^4}+\frac {e^{-2 x^2} \left (5 x^2-2 \log (x)+\log ^2(x)+x \log ^2(x)\right )}{x \left (5 x+e^x x+\log ^2(x)\right )^5}\right ) \, dx\\ &=-\left (16 \int \frac {e^{-2 x^2} \left (1+x+x^2\right )}{x \left (5 x+e^x x+\log ^2(x)\right )^4} \, dx\right )+16 \int \frac {e^{-2 x^2} \left (5 x^2-2 \log (x)+\log ^2(x)+x \log ^2(x)\right )}{x \left (5 x+e^x x+\log ^2(x)\right )^5} \, dx\\ &=16 \int \left (\frac {5 e^{-2 x^2} x}{\left (5 x+e^x x+\log ^2(x)\right )^5}-\frac {2 e^{-2 x^2} \log (x)}{x \left (5 x+e^x x+\log ^2(x)\right )^5}+\frac {e^{-2 x^2} \log ^2(x)}{\left (5 x+e^x x+\log ^2(x)\right )^5}+\frac {e^{-2 x^2} \log ^2(x)}{x \left (5 x+e^x x+\log ^2(x)\right )^5}\right ) \, dx-16 \int \left (\frac {e^{-2 x^2}}{\left (5 x+e^x x+\log ^2(x)\right )^4}+\frac {e^{-2 x^2}}{x \left (5 x+e^x x+\log ^2(x)\right )^4}+\frac {e^{-2 x^2} x}{\left (5 x+e^x x+\log ^2(x)\right )^4}\right ) \, dx\\ &=16 \int \frac {e^{-2 x^2} \log ^2(x)}{\left (5 x+e^x x+\log ^2(x)\right )^5} \, dx+16 \int \frac {e^{-2 x^2} \log ^2(x)}{x \left (5 x+e^x x+\log ^2(x)\right )^5} \, dx-16 \int \frac {e^{-2 x^2}}{\left (5 x+e^x x+\log ^2(x)\right )^4} \, dx-16 \int \frac {e^{-2 x^2}}{x \left (5 x+e^x x+\log ^2(x)\right )^4} \, dx-16 \int \frac {e^{-2 x^2} x}{\left (5 x+e^x x+\log ^2(x)\right )^4} \, dx-32 \int \frac {e^{-2 x^2} \log (x)}{x \left (5 x+e^x x+\log ^2(x)\right )^5} \, dx+80 \int \frac {e^{-2 x^2} x}{\left (5 x+e^x x+\log ^2(x)\right )^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.53, size = 24, normalized size = 1.00 \begin {gather*} \frac {4 e^{-2 x^2}}{\left (5 x+e^x x+\log ^2(x)\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 157, normalized size = 6.54 \begin {gather*} \frac {4}{e^{\left (2 \, x^{2}\right )} \log \relax (x)^{8} + 4 \, {\left (x e^{x} + 5 \, x\right )} e^{\left (2 \, x^{2}\right )} \log \relax (x)^{6} + 6 \, {\left (x^{2} e^{\left (2 \, x\right )} + 10 \, x^{2} e^{x} + 25 \, x^{2}\right )} e^{\left (2 \, x^{2}\right )} \log \relax (x)^{4} + 4 \, {\left (x^{3} e^{\left (3 \, x\right )} + 15 \, x^{3} e^{\left (2 \, x\right )} + 75 \, x^{3} e^{x} + 125 \, x^{3}\right )} e^{\left (2 \, x^{2}\right )} \log \relax (x)^{2} + {\left (x^{4} e^{\left (4 \, x\right )} + 20 \, x^{4} e^{\left (3 \, x\right )} + 150 \, x^{4} e^{\left (2 \, x\right )} + 500 \, x^{4} e^{x} + 625 \, x^{4}\right )} e^{\left (2 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.84, size = 239, normalized size = 9.96 \begin {gather*} \frac {4 \, e^{\left (2 \, x^{2}\right )}}{e^{\left (4 \, x^{2}\right )} \log \relax (x)^{8} + 20 \, x e^{\left (4 \, x^{2}\right )} \log \relax (x)^{6} + 4 \, x e^{\left (4 \, x^{2} + x\right )} \log \relax (x)^{6} + 150 \, x^{2} e^{\left (4 \, x^{2}\right )} \log \relax (x)^{4} + 6 \, x^{2} e^{\left (4 \, x^{2} + 2 \, x\right )} \log \relax (x)^{4} + 60 \, x^{2} e^{\left (4 \, x^{2} + x\right )} \log \relax (x)^{4} + 500 \, x^{3} e^{\left (4 \, x^{2}\right )} \log \relax (x)^{2} + 4 \, x^{3} e^{\left (4 \, x^{2} + 3 \, x\right )} \log \relax (x)^{2} + 60 \, x^{3} e^{\left (4 \, x^{2} + 2 \, x\right )} \log \relax (x)^{2} + 300 \, x^{3} e^{\left (4 \, x^{2} + x\right )} \log \relax (x)^{2} + 625 \, x^{4} e^{\left (4 \, x^{2}\right )} + x^{4} e^{\left (4 \, x^{2} + 4 \, x\right )} + 20 \, x^{4} e^{\left (4 \, x^{2} + 3 \, x\right )} + 150 \, x^{4} e^{\left (4 \, x^{2} + 2 \, x\right )} + 500 \, x^{4} e^{\left (4 \, x^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 0.96
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-2 x^{2}}}{\left (\ln \relax (x )^{2}+5 x +{\mathrm e}^{x} x \right )^{4}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 136, normalized size = 5.67 \begin {gather*} \frac {4 \, e^{\left (-2 \, x^{2}\right )}}{\log \relax (x)^{8} + 20 \, x \log \relax (x)^{6} + 150 \, x^{2} \log \relax (x)^{4} + x^{4} e^{\left (4 \, x\right )} + 500 \, x^{3} \log \relax (x)^{2} + 625 \, x^{4} + 4 \, {\left (x^{3} \log \relax (x)^{2} + 5 \, x^{4}\right )} e^{\left (3 \, x\right )} + 6 \, {\left (x^{2} \log \relax (x)^{4} + 10 \, x^{3} \log \relax (x)^{2} + 25 \, x^{4}\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x \log \relax (x)^{6} + 15 \, x^{2} \log \relax (x)^{4} + 75 \, x^{3} \log \relax (x)^{2} + 125 \, x^{4}\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.00, size = 148, normalized size = 6.17 \begin {gather*} \frac {4\,{\mathrm {e}}^{-2\,x^2}}{500\,x^4\,{\mathrm {e}}^x+20\,x\,{\ln \relax (x)}^6+{\ln \relax (x)}^8+150\,x^4\,{\mathrm {e}}^{2\,x}+20\,x^4\,{\mathrm {e}}^{3\,x}+x^4\,{\mathrm {e}}^{4\,x}+500\,x^3\,{\ln \relax (x)}^2+150\,x^2\,{\ln \relax (x)}^4+625\,x^4+300\,x^3\,{\mathrm {e}}^x\,{\ln \relax (x)}^2+60\,x^2\,{\mathrm {e}}^x\,{\ln \relax (x)}^4+60\,x^3\,{\mathrm {e}}^{2\,x}\,{\ln \relax (x)}^2+6\,x^2\,{\mathrm {e}}^{2\,x}\,{\ln \relax (x)}^4+4\,x^3\,{\mathrm {e}}^{3\,x}\,{\ln \relax (x)}^2+4\,x\,{\mathrm {e}}^x\,{\ln \relax (x)}^6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.84, size = 168, normalized size = 7.00 \begin {gather*} \frac {4 e^{- 2 x^{2}}}{x^{4} e^{4 x} + 20 x^{4} e^{3 x} + 150 x^{4} e^{2 x} + 500 x^{4} e^{x} + 625 x^{4} + 4 x^{3} e^{3 x} \log {\relax (x )}^{2} + 60 x^{3} e^{2 x} \log {\relax (x )}^{2} + 300 x^{3} e^{x} \log {\relax (x )}^{2} + 500 x^{3} \log {\relax (x )}^{2} + 6 x^{2} e^{2 x} \log {\relax (x )}^{4} + 60 x^{2} e^{x} \log {\relax (x )}^{4} + 150 x^{2} \log {\relax (x )}^{4} + 4 x e^{x} \log {\relax (x )}^{6} + 20 x \log {\relax (x )}^{6} + \log {\relax (x )}^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________