Optimal. Leaf size=24 \[ 5^{\frac {1}{2+x-\frac {x}{\log \left (\frac {x}{3}\right )}}}-e^5 \]
________________________________________________________________________________________
Rubi [F] time = 3.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {\log (5) \log \left (\frac {x}{3}\right )}{-x+(2+x) \log \left (\frac {x}{3}\right )}} \left (-\log (5)+\log (5) \log \left (\frac {x}{3}\right )-\log (5) \log ^2\left (\frac {x}{3}\right )\right )}{x^2+\left (-4 x-2 x^2\right ) \log \left (\frac {x}{3}\right )+\left (4+4 x+x^2\right ) \log ^2\left (\frac {x}{3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5^{\frac {\log \left (\frac {x}{3}\right )}{-x+(2+x) \log \left (\frac {x}{3}\right )}} \log (5) \left (-1-\log (3)-\log ^2\left (\frac {x}{3}\right )+\log (x)\right )}{\left (x-(2+x) \log \left (\frac {x}{3}\right )\right )^2} \, dx\\ &=\log (5) \int \frac {5^{\frac {\log \left (\frac {x}{3}\right )}{-x+(2+x) \log \left (\frac {x}{3}\right )}} \left (-1-\log (3)-\log ^2\left (\frac {x}{3}\right )+\log (x)\right )}{\left (x-(2+x) \log \left (\frac {x}{3}\right )\right )^2} \, dx\\ &=(3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \left (-1-\log (3)-\log ^2(x)+\log (3 x)\right )}{(3 x-(2+3 x) \log (x))^2} \, dx,x,\frac {x}{3}\right )\\ &=(3 \log (5)) \operatorname {Subst}\left (\int \left (\frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \left (-1-\log (3)-\log ^2(x)\right )}{(-3 x+2 \log (x)+3 x \log (x))^2}+\frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \log (3 x)}{(-3 x+2 \log (x)+3 x \log (x))^2}\right ) \, dx,x,\frac {x}{3}\right )\\ &=(3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \left (-1-\log (3)-\log ^2(x)\right )}{(-3 x+2 \log (x)+3 x \log (x))^2} \, dx,x,\frac {x}{3}\right )+(3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \log (3 x)}{(-3 x+2 \log (x)+3 x \log (x))^2} \, dx,x,\frac {x}{3}\right )\\ &=(3 \log (5)) \operatorname {Subst}\left (\int \left (-\frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(2+3 x)^2}+\frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \left (-4-12 x (1+\log (3))-9 x^2 (2+\log (3))-\log (81)\right )}{(2+3 x)^2 (3 x-2 \log (x)-3 x \log (x))^2}-\frac {6 e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} x}{(2+3 x)^2 (-3 x+2 \log (x)+3 x \log (x))}\right ) \, dx,x,\frac {x}{3}\right )+(3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \log (3 x)}{(-3 x+2 \log (x)+3 x \log (x))^2} \, dx,x,\frac {x}{3}\right )\\ &=-\left ((3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(2+3 x)^2} \, dx,x,\frac {x}{3}\right )\right )+(3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \left (-4-12 x (1+\log (3))-9 x^2 (2+\log (3))-\log (81)\right )}{(2+3 x)^2 (3 x-2 \log (x)-3 x \log (x))^2} \, dx,x,\frac {x}{3}\right )+(3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \log (3 x)}{(-3 x+2 \log (x)+3 x \log (x))^2} \, dx,x,\frac {x}{3}\right )-(18 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} x}{(2+3 x)^2 (-3 x+2 \log (x)+3 x \log (x))} \, dx,x,\frac {x}{3}\right )\\ &=-\left ((3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(2+3 x)^2} \, dx,x,\frac {x}{3}\right )\right )+(3 \log (5)) \operatorname {Subst}\left (\int \left (-\frac {4 e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(2+3 x)^2 (-3 x+2 \log (x)+3 x \log (x))^2}+\frac {4 e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(2+3 x) (-3 x+2 \log (x)+3 x \log (x))^2}-\frac {2 e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \left (1+\frac {\log (3)}{2}\right )}{(-3 x+2 \log (x)+3 x \log (x))^2}\right ) \, dx,x,\frac {x}{3}\right )+(3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \log (3 x)}{(-3 x+2 \log (x)+3 x \log (x))^2} \, dx,x,\frac {x}{3}\right )-(18 \log (5)) \operatorname {Subst}\left (\int \left (-\frac {2 e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{3 (2+3 x)^2 (-3 x+2 \log (x)+3 x \log (x))}+\frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{3 (2+3 x) (-3 x+2 \log (x)+3 x \log (x))}\right ) \, dx,x,\frac {x}{3}\right )\\ &=-\left ((3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(2+3 x)^2} \, dx,x,\frac {x}{3}\right )\right )+(3 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}} \log (3 x)}{(-3 x+2 \log (x)+3 x \log (x))^2} \, dx,x,\frac {x}{3}\right )-(6 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(2+3 x) (-3 x+2 \log (x)+3 x \log (x))} \, dx,x,\frac {x}{3}\right )-(12 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(2+3 x)^2 (-3 x+2 \log (x)+3 x \log (x))^2} \, dx,x,\frac {x}{3}\right )+(12 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(2+3 x) (-3 x+2 \log (x)+3 x \log (x))^2} \, dx,x,\frac {x}{3}\right )+(12 \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(2+3 x)^2 (-3 x+2 \log (x)+3 x \log (x))} \, dx,x,\frac {x}{3}\right )-(3 (2+\log (3)) \log (5)) \operatorname {Subst}\left (\int \frac {e^{\frac {\log (5) \log (x)}{-3 x+(2+3 x) \log (x)}}}{(-3 x+2 \log (x)+3 x \log (x))^2} \, dx,x,\frac {x}{3}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.69, size = 25, normalized size = 1.04 \begin {gather*} 5^{\frac {\log \left (\frac {x}{3}\right )}{-x+(2+x) \log \left (\frac {x}{3}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 22, normalized size = 0.92 \begin {gather*} e^{\left (\frac {\log \relax (5) \log \left (\frac {1}{3} \, x\right )}{{\left (x + 2\right )} \log \left (\frac {1}{3} \, x\right ) - x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.11, size = 26, normalized size = 1.08 \begin {gather*} e^{\left (\frac {\log \relax (5) \log \left (\frac {1}{3} \, x\right )}{x \log \left (\frac {1}{3} \, x\right ) - x + 2 \, \log \left (\frac {1}{3} \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 31, normalized size = 1.29
method | result | size |
risch | \(\left (\frac {x}{3}\right )^{\frac {\ln \relax (5)}{x \left (\ln \relax (x )-\ln \relax (3)\right )+2 \ln \relax (x )-2 \ln \relax (3)-x}}\) | \(31\) |
norman | \(\frac {x \ln \left (\frac {x}{3}\right ) {\mathrm e}^{\frac {\ln \relax (5) \ln \left (\frac {x}{3}\right )}{\left (2+x \right ) \ln \left (\frac {x}{3}\right )-x}}-x \,{\mathrm e}^{\frac {\ln \relax (5) \ln \left (\frac {x}{3}\right )}{\left (2+x \right ) \ln \left (\frac {x}{3}\right )-x}}+2 \ln \left (\frac {x}{3}\right ) {\mathrm e}^{\frac {\ln \relax (5) \ln \left (\frac {x}{3}\right )}{\left (2+x \right ) \ln \left (\frac {x}{3}\right )-x}}}{x \ln \left (\frac {x}{3}\right )+2 \ln \left (\frac {x}{3}\right )-x}\) | \(102\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 53, normalized size = 2.21 \begin {gather*} e^{\left (\frac {\log \relax (5) \log \relax (3)}{x {\left (\log \relax (3) + 1\right )} - {\left (x + 2\right )} \log \relax (x) + 2 \, \log \relax (3)} - \frac {\log \relax (5) \log \relax (x)}{x {\left (\log \relax (3) + 1\right )} - {\left (x + 2\right )} \log \relax (x) + 2 \, \log \relax (3)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.66, size = 56, normalized size = 2.33 \begin {gather*} {\mathrm {e}}^{-\frac {\ln \relax (5)\,\ln \relax (x)}{x+2\,\ln \relax (3)-2\,\ln \relax (x)+x\,\ln \relax (3)-x\,\ln \relax (x)}}\,{\mathrm {e}}^{\frac {\ln \relax (3)\,\ln \relax (5)}{x+2\,\ln \relax (3)-2\,\ln \relax (x)+x\,\ln \relax (3)-x\,\ln \relax (x)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.67, size = 19, normalized size = 0.79 \begin {gather*} e^{\frac {\log {\relax (5 )} \log {\left (\frac {x}{3} \right )}}{- x + \left (x + 2\right ) \log {\left (\frac {x}{3} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________