Optimal. Leaf size=27 \[ \frac {1}{2} \left (e x+5 \left (6 x-3 \left (1+e^{-x} x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 21, normalized size of antiderivative = 0.78, number of steps used = 10, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {12, 6688, 2196, 2176, 2194} \begin {gather*} \frac {1}{2} (30+e) x-\frac {15}{2} e^{-x} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{-x} \left (e^x (30+e)-30 x+15 x^2\right ) \, dx\\ &=\frac {1}{2} \int \left (30+e+15 e^{-x} (-2+x) x\right ) \, dx\\ &=\frac {1}{2} (30+e) x+\frac {15}{2} \int e^{-x} (-2+x) x \, dx\\ &=\frac {1}{2} (30+e) x+\frac {15}{2} \int \left (-2 e^{-x} x+e^{-x} x^2\right ) \, dx\\ &=\frac {1}{2} (30+e) x+\frac {15}{2} \int e^{-x} x^2 \, dx-15 \int e^{-x} x \, dx\\ &=15 e^{-x} x+\frac {1}{2} (30+e) x-\frac {15}{2} e^{-x} x^2-15 \int e^{-x} \, dx+15 \int e^{-x} x \, dx\\ &=15 e^{-x}+\frac {1}{2} (30+e) x-\frac {15}{2} e^{-x} x^2+15 \int e^{-x} \, dx\\ &=\frac {1}{2} (30+e) x-\frac {15}{2} e^{-x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 0.78 \begin {gather*} \frac {1}{2} \left (30 x+e x-15 e^{-x} x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 24, normalized size = 0.89 \begin {gather*} -\frac {1}{2} \, {\left (15 \, x^{2} - {\left (x e + 30 \, x\right )} e^{x}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.70, size = 18, normalized size = 0.67 \begin {gather*} -\frac {15}{2} \, x^{2} e^{\left (-x\right )} + \frac {1}{2} \, x e + 15 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.70
method | result | size |
default | \(\frac {x \,{\mathrm e}}{2}+15 x -\frac {15 x^{2} {\mathrm e}^{-x}}{2}\) | \(19\) |
risch | \(\frac {x \,{\mathrm e}}{2}+15 x -\frac {15 x^{2} {\mathrm e}^{-x}}{2}\) | \(19\) |
norman | \(\left (\left (\frac {{\mathrm e}}{2}+15\right ) x \,{\mathrm e}^{x}-\frac {15 x^{2}}{2}\right ) {\mathrm e}^{-x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.75, size = 32, normalized size = 1.19 \begin {gather*} \frac {1}{2} \, x e - \frac {15}{2} \, {\left (x^{2} + 2 \, x + 2\right )} e^{\left (-x\right )} + 15 \, {\left (x + 1\right )} e^{\left (-x\right )} + 15 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 14, normalized size = 0.52 \begin {gather*} \frac {x\,\left (\mathrm {e}-15\,x\,{\mathrm {e}}^{-x}+30\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 17, normalized size = 0.63 \begin {gather*} - \frac {15 x^{2} e^{- x}}{2} + x \left (\frac {e}{2} + 15\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________