Optimal. Leaf size=23 \[ e^{10} \left (-2 x+\frac {3}{\log (4)}+\frac {x^2}{\log (\log (x))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e^{10} x+2 e^{10} x \log (x) \log (\log (x))-2 e^{10} \log (x) \log ^2(\log (x))}{\log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{10} (-x-2 \log (x) \log (\log (x)) (-x+\log (\log (x))))}{\log (x) \log ^2(\log (x))} \, dx\\ &=e^{10} \int \frac {-x-2 \log (x) \log (\log (x)) (-x+\log (\log (x)))}{\log (x) \log ^2(\log (x))} \, dx\\ &=e^{10} \int \left (-2-\frac {x}{\log (x) \log ^2(\log (x))}+\frac {2 x}{\log (\log (x))}\right ) \, dx\\ &=-2 e^{10} x-e^{10} \int \frac {x}{\log (x) \log ^2(\log (x))} \, dx+\left (2 e^{10}\right ) \int \frac {x}{\log (\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 19, normalized size = 0.83 \begin {gather*} -2 e^{10} x+\frac {e^{10} x^2}{\log (\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 21, normalized size = 0.91 \begin {gather*} \frac {x^{2} e^{10} - 2 \, x e^{10} \log \left (\log \relax (x)\right )}{\log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 17, normalized size = 0.74 \begin {gather*} -2 \, x e^{10} + \frac {x^{2} e^{10}}{\log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 0.78
method | result | size |
risch | \(-2 x \,{\mathrm e}^{10}+\frac {x^{2} {\mathrm e}^{10}}{\ln \left (\ln \relax (x )\right )}\) | \(18\) |
norman | \(\frac {x^{2} {\mathrm e}^{10}-2 x \,{\mathrm e}^{10} \ln \left (\ln \relax (x )\right )}{\ln \left (\ln \relax (x )\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 17, normalized size = 0.74 \begin {gather*} -2 \, x e^{10} + \frac {x^{2} e^{10}}{\log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.41, size = 17, normalized size = 0.74 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{10}}{\ln \left (\ln \relax (x)\right )}-2\,x\,{\mathrm {e}}^{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 17, normalized size = 0.74 \begin {gather*} \frac {x^{2} e^{10}}{\log {\left (\log {\relax (x )} \right )}} - 2 x e^{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________