Optimal. Leaf size=35 \[ e^4 \left (x+\log \left (4 \left (e^x+x-(2-x)^2 \left (x-\frac {\log (4)}{2}\right )^2\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 1.17, antiderivative size = 58, normalized size of antiderivative = 1.66, number of steps used = 3, number of rules used = 3, integrand size = 258, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {6688, 12, 6686} \begin {gather*} e^4 \left (\log \left (-4 x^4+16 x^3-16 x^2+4 x+4 e^x-(2-x)^2 \log ^2(4)+4 (2-x)^2 x \log (4)\right )+x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^4 \left (8 e^x-4 x^4+4 x^3 \log (4)+2 x \left (-14-8 \log (4)+\log ^2(4)\right )+4 (1+\log (256))-x^2 \left (-32+\log ^2(4)+\log (256)\right )\right ) \left (x+\log \left (4 e^x+4 x-16 x^2+16 x^3-4 x^4+4 (-2+x)^2 x \log (4)-(-2+x)^2 \log ^2(4)\right )\right )}{4 e^x+4 x-16 x^2+16 x^3-4 x^4+4 (-2+x)^2 x \log (4)-(-2+x)^2 \log ^2(4)} \, dx\\ &=\left (2 e^4\right ) \int \frac {\left (8 e^x-4 x^4+4 x^3 \log (4)+2 x \left (-14-8 \log (4)+\log ^2(4)\right )+4 (1+\log (256))-x^2 \left (-32+\log ^2(4)+\log (256)\right )\right ) \left (x+\log \left (4 e^x+4 x-16 x^2+16 x^3-4 x^4+4 (-2+x)^2 x \log (4)-(-2+x)^2 \log ^2(4)\right )\right )}{4 e^x+4 x-16 x^2+16 x^3-4 x^4+4 (-2+x)^2 x \log (4)-(-2+x)^2 \log ^2(4)} \, dx\\ &=e^4 \left (x+\log \left (4 e^x+4 x-16 x^2+16 x^3-4 x^4+4 (2-x)^2 x \log (4)-(2-x)^2 \log ^2(4)\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 4.93, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {16 e^{4+x} x+e^4 \left (8 x-56 x^2+64 x^3-8 x^5\right )+e^4 \left (32 x-32 x^2-8 x^3+8 x^4\right ) \log (4)+e^4 \left (4 x^2-2 x^3\right ) \log ^2(4)+\left (16 e^{4+x}+e^4 \left (8-56 x+64 x^2-8 x^4\right )+e^4 \left (32-32 x-8 x^2+8 x^3\right ) \log (4)+e^4 \left (4 x-2 x^2\right ) \log ^2(4)\right ) \log \left (4 e^x+4 x-16 x^2+16 x^3-4 x^4+\left (16 x-16 x^2+4 x^3\right ) \log (4)+\left (-4+4 x-x^2\right ) \log ^2(4)\right )}{4 e^x+4 x-16 x^2+16 x^3-4 x^4+\left (16 x-16 x^2+4 x^3\right ) \log (4)+\left (-4+4 x-x^2\right ) \log ^2(4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 147, normalized size = 4.20 \begin {gather*} x^{2} e^{4} + 2 \, x e^{4} \log \left (-4 \, {\left ({\left (x^{2} - 4 \, x + 4\right )} e^{4} \log \relax (2)^{2} - 2 \, {\left (x^{3} - 4 \, x^{2} + 4 \, x\right )} e^{4} \log \relax (2) + {\left (x^{4} - 4 \, x^{3} + 4 \, x^{2} - x\right )} e^{4} - e^{\left (x + 4\right )}\right )} e^{\left (-4\right )}\right ) + e^{4} \log \left (-4 \, {\left ({\left (x^{2} - 4 \, x + 4\right )} e^{4} \log \relax (2)^{2} - 2 \, {\left (x^{3} - 4 \, x^{2} + 4 \, x\right )} e^{4} \log \relax (2) + {\left (x^{4} - 4 \, x^{3} + 4 \, x^{2} - x\right )} e^{4} - e^{\left (x + 4\right )}\right )} e^{\left (-4\right )}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (x^{3} - 2 \, x^{2}\right )} e^{4} \log \relax (2)^{2} - 2 \, {\left (x^{4} - x^{3} - 4 \, x^{2} + 4 \, x\right )} e^{4} \log \relax (2) + {\left (x^{5} - 8 \, x^{3} + 7 \, x^{2} - x\right )} e^{4} - 2 \, x e^{\left (x + 4\right )} + {\left ({\left (x^{2} - 2 \, x\right )} e^{4} \log \relax (2)^{2} - 2 \, {\left (x^{3} - x^{2} - 4 \, x + 4\right )} e^{4} \log \relax (2) + {\left (x^{4} - 8 \, x^{2} + 7 \, x - 1\right )} e^{4} - 2 \, e^{\left (x + 4\right )}\right )} \log \left (-4 \, x^{4} + 16 \, x^{3} - 4 \, {\left (x^{2} - 4 \, x + 4\right )} \log \relax (2)^{2} - 16 \, x^{2} + 8 \, {\left (x^{3} - 4 \, x^{2} + 4 \, x\right )} \log \relax (2) + 4 \, x + 4 \, e^{x}\right )\right )}}{x^{4} - 4 \, x^{3} + {\left (x^{2} - 4 \, x + 4\right )} \log \relax (2)^{2} + 4 \, x^{2} - 2 \, {\left (x^{3} - 4 \, x^{2} + 4 \, x\right )} \log \relax (2) - x - e^{x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 134, normalized size = 3.83
method | result | size |
risch | \(x^{2} {\mathrm e}^{4}+2 x \,{\mathrm e}^{4} \ln \left (4 \,{\mathrm e}^{x}+4 \left (-x^{2}+4 x -4\right ) \ln \relax (2)^{2}+2 \left (4 x^{3}-16 x^{2}+16 x \right ) \ln \relax (2)-4 x^{4}+16 x^{3}-16 x^{2}+4 x \right )+{\mathrm e}^{4} \ln \left (4 \,{\mathrm e}^{x}+4 \left (-x^{2}+4 x -4\right ) \ln \relax (2)^{2}+2 \left (4 x^{3}-16 x^{2}+16 x \right ) \ln \relax (2)-4 x^{4}+16 x^{3}-16 x^{2}+4 x \right )^{2}\) | \(134\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 138, normalized size = 3.94 \begin {gather*} x^{2} e^{4} + 4 \, x e^{4} \log \relax (2) + e^{4} \log \left (-x^{4} + 2 \, x^{3} {\left (\log \relax (2) + 2\right )} - {\left (\log \relax (2)^{2} + 8 \, \log \relax (2) + 4\right )} x^{2} + {\left (4 \, \log \relax (2)^{2} + 8 \, \log \relax (2) + 1\right )} x - 4 \, \log \relax (2)^{2} + e^{x}\right )^{2} + 2 \, {\left (x e^{4} + 2 \, e^{4} \log \relax (2)\right )} \log \left (-x^{4} + 2 \, x^{3} {\left (\log \relax (2) + 2\right )} - {\left (\log \relax (2)^{2} + 8 \, \log \relax (2) + 4\right )} x^{2} + {\left (4 \, \log \relax (2)^{2} + 8 \, \log \relax (2) + 1\right )} x - 4 \, \log \relax (2)^{2} + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.10, size = 63, normalized size = 1.80 \begin {gather*} {\mathrm {e}}^4\,{\left (x+\ln \left (4\,x+4\,{\mathrm {e}}^x-4\,{\ln \relax (2)}^2\,\left (x^2-4\,x+4\right )+2\,\ln \relax (2)\,\left (4\,x^3-16\,x^2+16\,x\right )-16\,x^2+16\,x^3-4\,x^4\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.01, size = 133, normalized size = 3.80 \begin {gather*} x^{2} e^{4} + 2 x e^{4} \log {\left (- 4 x^{4} + 16 x^{3} - 16 x^{2} + 4 x + \left (- 4 x^{2} + 16 x - 16\right ) \log {\relax (2 )}^{2} + \left (8 x^{3} - 32 x^{2} + 32 x\right ) \log {\relax (2 )} + 4 e^{x} \right )} + e^{4} \log {\left (- 4 x^{4} + 16 x^{3} - 16 x^{2} + 4 x + \left (- 4 x^{2} + 16 x - 16\right ) \log {\relax (2 )}^{2} + \left (8 x^{3} - 32 x^{2} + 32 x\right ) \log {\relax (2 )} + 4 e^{x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________