Optimal. Leaf size=31 \[ \frac {\log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{\left (2+\frac {e^x}{x}\right ) x} \]
________________________________________________________________________________________
Rubi [F] time = 15.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24 x+16 x^3+e^x \left (12+8 x^2\right )+\left (6 x-40 x^3+e^x \left (3 x-20 x^3\right )+\left (-8 x^3-4 e^x x^3\right ) \log (x)\right ) \log \left (\frac {-3+20 x^2+4 x^2 \log (x)}{4 x^2}\right ) \log \left (\log \left (\frac {-3+20 x^2+4 x^2 \log (x)}{4 x^2}\right )\right ) \log \left (\log ^2\left (\log \left (\frac {-3+20 x^2+4 x^2 \log (x)}{4 x^2}\right )\right )\right )}{\left (-12 x^3+80 x^5+e^{2 x} \left (-3 x+20 x^3\right )+e^x \left (-12 x^2+80 x^4\right )+\left (4 e^{2 x} x^3+16 e^x x^4+16 x^5\right ) \log (x)\right ) \log \left (\frac {-3+20 x^2+4 x^2 \log (x)}{4 x^2}\right ) \log \left (\log \left (\frac {-3+20 x^2+4 x^2 \log (x)}{4 x^2}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-24 x-16 x^3-4 e^x \left (3+2 x^2\right )+\left (2+e^x\right ) x \left (-3+20 x^2+4 x^2 \log (x)\right ) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right ) \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{x \left (e^x+2 x\right )^2 \left (3-20 x^2-4 x^2 \log (x)\right ) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )} \, dx\\ &=\int \left (\frac {2 (-1+x) \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{\left (e^x+2 x\right )^2}-\frac {-12-8 x^2-3 x \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right ) \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )+20 x^3 \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right ) \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )+4 x^3 \log (x) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right ) \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{x \left (e^x+2 x\right ) \left (-3+20 x^2+4 x^2 \log (x)\right ) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )}\right ) \, dx\\ &=2 \int \frac {(-1+x) \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{\left (e^x+2 x\right )^2} \, dx-\int \frac {-12-8 x^2-3 x \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right ) \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )+20 x^3 \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right ) \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )+4 x^3 \log (x) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right ) \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{x \left (e^x+2 x\right ) \left (-3+20 x^2+4 x^2 \log (x)\right ) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )} \, dx\\ &=2 \int \left (-\frac {\log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{\left (e^x+2 x\right )^2}+\frac {x \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{\left (e^x+2 x\right )^2}\right ) \, dx-\int \frac {-\frac {4 \left (3+2 x^2\right )}{x \left (-3+20 x^2+4 x^2 \log (x)\right ) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )}+\log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{e^x+2 x} \, dx\\ &=-\left (2 \int \frac {\log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{\left (e^x+2 x\right )^2} \, dx\right )+2 \int \frac {x \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{\left (e^x+2 x\right )^2} \, dx-\int \left (-\frac {12}{x \left (e^x+2 x\right ) \left (-3+20 x^2+4 x^2 \log (x)\right ) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )}-\frac {8 x}{\left (e^x+2 x\right ) \left (-3+20 x^2+4 x^2 \log (x)\right ) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )}+\frac {\log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{e^x+2 x}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{\left (e^x+2 x\right )^2} \, dx\right )+2 \int \frac {x \log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{\left (e^x+2 x\right )^2} \, dx+8 \int \frac {x}{\left (e^x+2 x\right ) \left (-3+20 x^2+4 x^2 \log (x)\right ) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )} \, dx+12 \int \frac {1}{x \left (e^x+2 x\right ) \left (-3+20 x^2+4 x^2 \log (x)\right ) \log \left (5-\frac {3}{4 x^2}+\log (x)\right ) \log \left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )} \, dx-\int \frac {\log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{e^x+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 26, normalized size = 0.84 \begin {gather*} \frac {\log \left (\log ^2\left (\log \left (5-\frac {3}{4 x^2}+\log (x)\right )\right )\right )}{e^x+2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.98, size = 33, normalized size = 1.06 \begin {gather*} \frac {\log \left (\log \left (\log \left (\frac {4 \, x^{2} \log \relax (x) + 20 \, x^{2} - 3}{4 \, x^{2}}\right )\right )^{2}\right )}{2 \, x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 5.01, size = 37, normalized size = 1.19 \begin {gather*} \frac {\log \left (\log \left (-2 \, \log \relax (2) + \log \left (4 \, x^{2} \log \relax (x) + 20 \, x^{2} - 3\right ) - 2 \, \log \relax (x)\right )^{2}\right )}{2 \, x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 2.41, size = 820, normalized size = 26.45
method | result | size |
risch | \(\frac {2 \ln \left (\ln \left (-2 \ln \relax (x )+\ln \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (\frac {i}{x^{2}}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )\right )\right )}{2}\right )\right )}{{\mathrm e}^{x}+2 x}-\frac {i \pi \,\mathrm {csgn}\left (i \ln \left (-2 \ln \relax (x )+\ln \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (\frac {i}{x^{2}}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )\right )\right )}{2}\right )^{2}\right ) \left (\mathrm {csgn}\left (i \ln \left (-2 \ln \relax (x )+\ln \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (\frac {i}{x^{2}}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )\right )\right )}{2}\right )\right )^{2}-2 \,\mathrm {csgn}\left (i \ln \left (-2 \ln \relax (x )+\ln \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (\frac {i}{x^{2}}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )\right )\right )}{2}\right )^{2}\right ) \mathrm {csgn}\left (i \ln \left (-2 \ln \relax (x )+\ln \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (\frac {i}{x^{2}}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )\right )\right )}{2}\right )\right )+\mathrm {csgn}\left (i \ln \left (-2 \ln \relax (x )+\ln \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (\frac {i}{x^{2}}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )}{x^{2}}\right )+\mathrm {csgn}\left (i \left (-\frac {3}{4}+\left (5+\ln \relax (x )\right ) x^{2}\right )\right )\right )}{2}\right )^{2}\right )^{2}\right )}{2 \left ({\mathrm e}^{x}+2 x \right )}\) | \(820\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 36, normalized size = 1.16 \begin {gather*} \frac {2 \, \log \left (\log \left (-2 \, \log \relax (2) + \log \left (4 \, x^{2} \log \relax (x) + 20 \, x^{2} - 3\right ) - 2 \, \log \relax (x)\right )\right )}{2 \, x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {24\,x+{\mathrm {e}}^x\,\left (8\,x^2+12\right )+16\,x^3+\ln \left (\frac {x^2\,\ln \relax (x)+5\,x^2-\frac {3}{4}}{x^2}\right )\,\ln \left ({\ln \left (\ln \left (\frac {x^2\,\ln \relax (x)+5\,x^2-\frac {3}{4}}{x^2}\right )\right )}^2\right )\,\ln \left (\ln \left (\frac {x^2\,\ln \relax (x)+5\,x^2-\frac {3}{4}}{x^2}\right )\right )\,\left (6\,x+{\mathrm {e}}^x\,\left (3\,x-20\,x^3\right )-40\,x^3-\ln \relax (x)\,\left (4\,x^3\,{\mathrm {e}}^x+8\,x^3\right )\right )}{\ln \left (\frac {x^2\,\ln \relax (x)+5\,x^2-\frac {3}{4}}{x^2}\right )\,\ln \left (\ln \left (\frac {x^2\,\ln \relax (x)+5\,x^2-\frac {3}{4}}{x^2}\right )\right )\,\left ({\mathrm {e}}^{2\,x}\,\left (3\,x-20\,x^3\right )+{\mathrm {e}}^x\,\left (12\,x^2-80\,x^4\right )-\ln \relax (x)\,\left (16\,x^4\,{\mathrm {e}}^x+4\,x^3\,{\mathrm {e}}^{2\,x}+16\,x^5\right )+12\,x^3-80\,x^5\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________