Optimal. Leaf size=26 \[ x \log \left (x+\frac {e^x}{2 x+5 \left (x+\frac {6+x}{20}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.39, antiderivative size = 17, normalized size of antiderivative = 0.65, number of steps used = 15, number of rules used = 4, integrand size = 100, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {6688, 6742, 77, 2548} \begin {gather*} x \log \left (x+\frac {4 e^x}{29 x+6}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 77
Rule 2548
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {x \left (4 e^x (-23+29 x)+(6+29 x)^2\right )}{(6+29 x) \left (4 e^x+x (6+29 x)\right )}+\log \left (x+\frac {4 e^x}{6+29 x}\right )\right ) \, dx\\ &=\int \frac {x \left (4 e^x (-23+29 x)+(6+29 x)^2\right )}{(6+29 x) \left (4 e^x+x (6+29 x)\right )} \, dx+\int \log \left (x+\frac {4 e^x}{6+29 x}\right ) \, dx\\ &=x \log \left (x+\frac {4 e^x}{6+29 x}\right )-\int \frac {x \left (4 e^x (-23+29 x)+(6+29 x)^2\right )}{(6+29 x) \left (4 e^x+x (6+29 x)\right )} \, dx+\int \left (\frac {x (-23+29 x)}{6+29 x}-\frac {x \left (-6-52 x+29 x^2\right )}{4 e^x+6 x+29 x^2}\right ) \, dx\\ &=x \log \left (x+\frac {4 e^x}{6+29 x}\right )+\int \frac {x (-23+29 x)}{6+29 x} \, dx-\int \frac {x \left (-6-52 x+29 x^2\right )}{4 e^x+6 x+29 x^2} \, dx-\int \left (\frac {x (-23+29 x)}{6+29 x}-\frac {x \left (-6-52 x+29 x^2\right )}{4 e^x+6 x+29 x^2}\right ) \, dx\\ &=x \log \left (x+\frac {4 e^x}{6+29 x}\right )-\int \frac {x (-23+29 x)}{6+29 x} \, dx+\int \frac {x \left (-6-52 x+29 x^2\right )}{4 e^x+6 x+29 x^2} \, dx+\int \left (-1+x+\frac {6}{6+29 x}\right ) \, dx-\int \left (-\frac {6 x}{4 e^x+6 x+29 x^2}-\frac {52 x^2}{4 e^x+6 x+29 x^2}+\frac {29 x^3}{4 e^x+6 x+29 x^2}\right ) \, dx\\ &=-x+\frac {x^2}{2}+\frac {6}{29} \log (6+29 x)+x \log \left (x+\frac {4 e^x}{6+29 x}\right )+6 \int \frac {x}{4 e^x+6 x+29 x^2} \, dx-29 \int \frac {x^3}{4 e^x+6 x+29 x^2} \, dx+52 \int \frac {x^2}{4 e^x+6 x+29 x^2} \, dx-\int \left (-1+x+\frac {6}{6+29 x}\right ) \, dx+\int \left (-\frac {6 x}{4 e^x+6 x+29 x^2}-\frac {52 x^2}{4 e^x+6 x+29 x^2}+\frac {29 x^3}{4 e^x+6 x+29 x^2}\right ) \, dx\\ &=x \log \left (x+\frac {4 e^x}{6+29 x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 17, normalized size = 0.65 \begin {gather*} x \log \left (x+\frac {4 e^x}{6+29 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 24, normalized size = 0.92 \begin {gather*} x \log \left (\frac {29 \, x^{2} + 6 \, x + 4 \, e^{x}}{29 \, x + 6}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 24, normalized size = 0.92 \begin {gather*} x \log \left (\frac {29 \, x^{2} + 6 \, x + 4 \, e^{x}}{29 \, x + 6}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 25, normalized size = 0.96
method | result | size |
norman | \(\ln \left (\frac {4 \,{\mathrm e}^{x}+29 x^{2}+6 x}{29 x +6}\right ) x\) | \(25\) |
risch | \(x \ln \left (x^{2}+\frac {6 x}{29}+\frac {4 \,{\mathrm e}^{x}}{29}\right )-x \ln \left (x +\frac {6}{29}\right )-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x +\frac {6}{29}}\right ) \mathrm {csgn}\left (i \left (x^{2}+\frac {6 x}{29}+\frac {4 \,{\mathrm e}^{x}}{29}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\frac {6 x}{29}+\frac {4 \,{\mathrm e}^{x}}{29}\right )}{x +\frac {6}{29}}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x +\frac {6}{29}}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\frac {6 x}{29}+\frac {4 \,{\mathrm e}^{x}}{29}\right )}{x +\frac {6}{29}}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (x^{2}+\frac {6 x}{29}+\frac {4 \,{\mathrm e}^{x}}{29}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\frac {6 x}{29}+\frac {4 \,{\mathrm e}^{x}}{29}\right )}{x +\frac {6}{29}}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (x^{2}+\frac {6 x}{29}+\frac {4 \,{\mathrm e}^{x}}{29}\right )}{x +\frac {6}{29}}\right )^{3}}{2}\) | \(177\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 26, normalized size = 1.00 \begin {gather*} x \log \left (29 \, x^{2} + 6 \, x + 4 \, e^{x}\right ) - x \log \left (29 \, x + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.73, size = 24, normalized size = 0.92 \begin {gather*} x\,\ln \left (\frac {6\,x+4\,{\mathrm {e}}^x+29\,x^2}{29\,x+6}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.69, size = 54, normalized size = 2.08 \begin {gather*} \left (x + \frac {3}{29}\right ) \log {\left (\frac {29 x^{2} + 6 x + 4 e^{x}}{29 x + 6} \right )} + \frac {3 \log {\left (29 x + 6 \right )}}{29} - \frac {3 \log {\left (\frac {29 x^{2}}{4} + \frac {3 x}{2} + e^{x} \right )}}{29} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________