Optimal. Leaf size=23 \[ \log \left (\frac {1}{5}-\frac {4}{3 x}+\log ((3-2 x) x \log (\log (2)))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-60-5 x+60 x^2}{60 x-49 x^2+6 x^3+\left (-45 x^2+30 x^3\right ) \log \left (\left (3 x-2 x^2\right ) \log (\log (2))\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-60-5 x+60 x^2}{(3-2 x) x (20-3 x-15 x \log ((3-2 x) x \log (\log (2))))} \, dx\\ &=\int \left (\frac {30}{-20+3 x+15 x \log ((3-2 x) x \log (\log (2)))}+\frac {20}{x (-20+3 x+15 x \log ((3-2 x) x \log (\log (2))))}+\frac {45}{(-3+2 x) (-20+3 x+15 x \log ((3-2 x) x \log (\log (2))))}\right ) \, dx\\ &=20 \int \frac {1}{x (-20+3 x+15 x \log ((3-2 x) x \log (\log (2))))} \, dx+30 \int \frac {1}{-20+3 x+15 x \log ((3-2 x) x \log (\log (2)))} \, dx+45 \int \frac {1}{(-3+2 x) (-20+3 x+15 x \log ((3-2 x) x \log (\log (2))))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 25, normalized size = 1.09 \begin {gather*} -\log (x)+\log (20-3 x-15 x \log ((3-2 x) x \log (\log (2)))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.30, size = 28, normalized size = 1.22 \begin {gather*} \log \left (\frac {15 \, x \log \left (-{\left (2 \, x^{2} - 3 \, x\right )} \log \left (\log \relax (2)\right )\right ) + 3 \, x - 20}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 30, normalized size = 1.30 \begin {gather*} \log \left (15 \, x \log \left (-2 \, x^{2} \log \left (\log \relax (2)\right ) + 3 \, x \log \left (\log \relax (2)\right )\right ) + 3 \, x - 20\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 27, normalized size = 1.17
method | result | size |
risch | \(\ln \left (\ln \left (\left (-2 x^{2}+3 x \right ) \ln \left (\ln \relax (2)\right )\right )+\frac {3 x -20}{15 x}\right )\) | \(27\) |
norman | \(-\ln \relax (x )+\ln \left (15 x \ln \left (\left (-2 x^{2}+3 x \right ) \ln \left (\ln \relax (2)\right )\right )+3 x -20\right )\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.95, size = 33, normalized size = 1.43 \begin {gather*} \log \left (\frac {3 \, x {\left (5 \, \log \left (\log \left (\log \relax (2)\right )\right ) + 1\right )} + 15 \, x \log \relax (x) + 15 \, x \log \left (-2 \, x + 3\right ) - 20}{15 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.94, size = 29, normalized size = 1.26 \begin {gather*} \ln \left (3\,x+15\,x\,\left (\ln \left (x\,\left (2\,x-3\right )\right )+\ln \left (-\ln \left (\ln \relax (2)\right )\right )\right )-20\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 24, normalized size = 1.04 \begin {gather*} \log {\left (\log {\left (\left (- 2 x^{2} + 3 x\right ) \log {\left (\log {\relax (2 )} \right )} \right )} + \frac {3 x - 20}{15 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________