Optimal. Leaf size=28 \[ x+\frac {5 x \left (-3-e^{2 x^4}+x-\frac {\log (5)}{x}\right )}{\log (9)} \]
________________________________________________________________________________________
Rubi [C] time = 0.07, antiderivative size = 87, normalized size of antiderivative = 3.11, number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {12, 2226, 2208, 2218} \begin {gather*} \frac {5 x \Gamma \left (\frac {1}{4},-2 x^4\right )}{4 \sqrt [4]{2} \sqrt [4]{-x^4} \log (9)}+\frac {5 x^2}{\log (9)}+\frac {5 x^5 \Gamma \left (\frac {5}{4},-2 x^4\right )}{\sqrt [4]{2} \left (-x^4\right )^{5/4} \log (9)}-\frac {x (15-\log (9))}{\log (9)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2208
Rule 2218
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-15+10 x+e^{2 x^4} \left (-5-40 x^4\right )+\log (9)\right ) \, dx}{\log (9)}\\ &=\frac {5 x^2}{\log (9)}-\frac {x (15-\log (9))}{\log (9)}+\frac {\int e^{2 x^4} \left (-5-40 x^4\right ) \, dx}{\log (9)}\\ &=\frac {5 x^2}{\log (9)}-\frac {x (15-\log (9))}{\log (9)}+\frac {\int \left (-5 e^{2 x^4}-40 e^{2 x^4} x^4\right ) \, dx}{\log (9)}\\ &=\frac {5 x^2}{\log (9)}-\frac {x (15-\log (9))}{\log (9)}-\frac {5 \int e^{2 x^4} \, dx}{\log (9)}-\frac {40 \int e^{2 x^4} x^4 \, dx}{\log (9)}\\ &=\frac {5 x^2}{\log (9)}+\frac {5 x \Gamma \left (\frac {1}{4},-2 x^4\right )}{4 \sqrt [4]{2} \sqrt [4]{-x^4} \log (9)}+\frac {5 x^5 \Gamma \left (\frac {5}{4},-2 x^4\right )}{\sqrt [4]{2} \left (-x^4\right )^{5/4} \log (9)}-\frac {x (15-\log (9))}{\log (9)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.05, size = 74, normalized size = 2.64 \begin {gather*} \frac {-15 x+5 x^2+\frac {5 x \Gamma \left (\frac {1}{4},-2 x^4\right )}{4 \sqrt [4]{2} \sqrt [4]{-x^4}}+\frac {5 x^5 \Gamma \left (\frac {5}{4},-2 x^4\right )}{\sqrt [4]{2} \left (-x^4\right )^{5/4}}+x \log (9)}{\log (9)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 29, normalized size = 1.04 \begin {gather*} \frac {5 \, x^{2} - 5 \, x e^{\left (2 \, x^{4}\right )} + 2 \, x \log \relax (3) - 15 \, x}{2 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 29, normalized size = 1.04 \begin {gather*} \frac {5 \, x^{2} - 5 \, x e^{\left (2 \, x^{4}\right )} + 2 \, x \log \relax (3) - 15 \, x}{2 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.07
method | result | size |
default | \(\frac {-15 x -5 x \,{\mathrm e}^{2 x^{4}}+5 x^{2}+2 x \ln \relax (3)}{2 \ln \relax (3)}\) | \(30\) |
risch | \(-\frac {15 x}{2 \ln \relax (3)}-\frac {5 x \,{\mathrm e}^{2 x^{4}}}{2 \ln \relax (3)}+\frac {5 x^{2}}{2 \ln \relax (3)}+x\) | \(32\) |
norman | \(\frac {5 x^{2}}{2 \ln \relax (3)}-\frac {5 x \,{\mathrm e}^{2 x^{4}}}{2 \ln \relax (3)}+\frac {\left (2 \ln \relax (3)-15\right ) x}{2 \ln \relax (3)}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 29, normalized size = 1.04 \begin {gather*} \frac {5 \, x^{2} - 5 \, x e^{\left (2 \, x^{4}\right )} + 2 \, x \log \relax (3) - 15 \, x}{2 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 27, normalized size = 0.96 \begin {gather*} \frac {x\,\left (\ln \relax (9)-15\right )-5\,x\,{\mathrm {e}}^{2\,x^4}+5\,x^2}{2\,\ln \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 37, normalized size = 1.32 \begin {gather*} \frac {5 x^{2}}{2 \log {\relax (3 )}} - \frac {5 x e^{2 x^{4}}}{2 \log {\relax (3 )}} + \frac {x \left (-15 + 2 \log {\relax (3 )}\right )}{2 \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________