Optimal. Leaf size=28 \[ \frac {e}{x}-x+\frac {5 e^{e^{3 x} x}}{-1-\log (4)} \]
________________________________________________________________________________________
Rubi [F] time = 0.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e-x^2+e^{3 x+e^{3 x} x} \left (-5 x^2-15 x^3\right )+\left (-e-x^2\right ) \log (4)}{x^2+x^2 \log (4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e-x^2+e^{3 x+e^{3 x} x} \left (-5 x^2-15 x^3\right )+\left (-e-x^2\right ) \log (4)}{x^2 (1+\log (4))} \, dx\\ &=\frac {\int \frac {-e-x^2+e^{3 x+e^{3 x} x} \left (-5 x^2-15 x^3\right )+\left (-e-x^2\right ) \log (4)}{x^2} \, dx}{1+\log (4)}\\ &=\frac {\int \left (5 e^{3 x+e^{3 x} x} (-1-3 x)-\frac {\left (e+x^2\right ) (1+\log (4))}{x^2}\right ) \, dx}{1+\log (4)}\\ &=\frac {5 \int e^{3 x+e^{3 x} x} (-1-3 x) \, dx}{1+\log (4)}-\int \frac {e+x^2}{x^2} \, dx\\ &=\frac {5 \int \left (-e^{3 x+e^{3 x} x}-3 e^{3 x+e^{3 x} x} x\right ) \, dx}{1+\log (4)}-\int \left (1+\frac {e}{x^2}\right ) \, dx\\ &=\frac {e}{x}-x-\frac {5 \int e^{3 x+e^{3 x} x} \, dx}{1+\log (4)}-\frac {15 \int e^{3 x+e^{3 x} x} x \, dx}{1+\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 26, normalized size = 0.93 \begin {gather*} \frac {e}{x}-x-\frac {5 e^{e^{3 x} x}}{1+\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.12, size = 55, normalized size = 1.96 \begin {gather*} -\frac {{\left (5 \, x e^{\left (x e^{\left (3 \, x\right )} + 3 \, x\right )} + {\left (x^{2} + 2 \, {\left (x^{2} - e\right )} \log \relax (2) - e\right )} e^{\left (3 \, x\right )}\right )} e^{\left (-3 \, x\right )}}{2 \, x \log \relax (2) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 72, normalized size = 2.57 \begin {gather*} -\frac {2 \, x^{2} e^{\left (3 \, x\right )} \log \relax (2) + x^{2} e^{\left (3 \, x\right )} + 5 \, x e^{\left (x e^{\left (3 \, x\right )} + 3 \, x\right )} - 2 \, e^{\left (3 \, x + 1\right )} \log \relax (2) - e^{\left (3 \, x + 1\right )}}{2 \, x e^{\left (3 \, x\right )} \log \relax (2) + x e^{\left (3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 28, normalized size = 1.00
method | result | size |
risch | \(-x +\frac {{\mathrm e}}{x}-\frac {5 \,{\mathrm e}^{x \,{\mathrm e}^{3 x}}}{1+2 \ln \relax (2)}\) | \(28\) |
norman | \(\frac {-x^{2}-\frac {5 x \,{\mathrm e}^{x \,{\mathrm e}^{3 x}}}{1+2 \ln \relax (2)}+{\mathrm e}}{x}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 73, normalized size = 2.61 \begin {gather*} -\frac {2 \, x \log \relax (2)}{2 \, \log \relax (2) + 1} - \frac {x}{2 \, \log \relax (2) + 1} - \frac {5 \, e^{\left (x e^{\left (3 \, x\right )}\right )}}{2 \, \log \relax (2) + 1} + \frac {2 \, e \log \relax (2)}{x {\left (2 \, \log \relax (2) + 1\right )}} + \frac {e}{x {\left (2 \, \log \relax (2) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.37, size = 25, normalized size = 0.89 \begin {gather*} \frac {\mathrm {e}}{x}-\frac {5\,{\mathrm {e}}^{x\,{\mathrm {e}}^{3\,x}}}{\ln \relax (4)+1}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 22, normalized size = 0.79 \begin {gather*} - x - \frac {5 e^{x e^{3 x}}}{1 + 2 \log {\relax (2 )}} + \frac {e}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________