Optimal. Leaf size=32 \[ \frac {e^x}{\left (e^{\frac {2 x}{3+\frac {1}{x}+16 x^2}}+\frac {x}{4}\right ) x} \]
________________________________________________________________________________________
Rubi [F] time = 42.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-8 x-44 x^2-48 x^3-220 x^4-640 x^5+384 x^6-2048 x^7+1024 x^8+e^{\frac {2 x^2}{1+3 x+16 x^3}} \left (-16-80 x-112 x^2-464 x^3-1024 x^4+2048 x^5-4096 x^6+4096 x^7\right )\right )}{x^4+6 x^5+9 x^6+32 x^7+96 x^8+256 x^{10}+e^{\frac {4 x^2}{1+3 x+16 x^3}} \left (16 x^2+96 x^3+144 x^4+512 x^5+1536 x^6+4096 x^8\right )+e^{\frac {2 x^2}{1+3 x+16 x^3}} \left (8 x^3+48 x^4+72 x^5+256 x^6+768 x^7+2048 x^9\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^x \left ((-2+x) x \left (1+3 x+16 x^3\right )^2+4 e^{\frac {2 x^2}{1+3 x+16 x^3}} \left (-1-5 x-7 x^2-29 x^3-64 x^4+128 x^5-256 x^6+256 x^7\right )\right )}{x^2 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1+3 x+16 x^3\right )^2} \, dx\\ &=4 \int \frac {e^x \left ((-2+x) x \left (1+3 x+16 x^3\right )^2+4 e^{\frac {2 x^2}{1+3 x+16 x^3}} \left (-1-5 x-7 x^2-29 x^3-64 x^4+128 x^5-256 x^6+256 x^7\right )\right )}{x^2 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1+3 x+16 x^3\right )^2} \, dx\\ &=4 \int \left (-\frac {e^x \left (1+6 x+5 x^2+26 x^3+96 x^4+32 x^5+256 x^6\right )}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 (1+4 x)^2 \left (1-x+4 x^2\right )^2}+\frac {e^x \left (-1-5 x-7 x^2-29 x^3-64 x^4+128 x^5-256 x^6+256 x^7\right )}{x^2 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1+3 x+16 x^3\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {e^x \left (1+6 x+5 x^2+26 x^3+96 x^4+32 x^5+256 x^6\right )}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 (1+4 x)^2 \left (1-x+4 x^2\right )^2} \, dx\right )+4 \int \frac {e^x \left (-1-5 x-7 x^2-29 x^3-64 x^4+128 x^5-256 x^6+256 x^7\right )}{x^2 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1+3 x+16 x^3\right )^2} \, dx\\ &=-\left (4 \int \left (\frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2}+\frac {e^x}{3 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 (1+4 x)^2}-\frac {e^x (3+x)}{4 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )^2}+\frac {5 e^x}{12 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )}\right ) \, dx\right )+4 \int \left (-\frac {e^x}{x^2 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )}+\frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )}-\frac {4 e^x}{3 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)^2}-\frac {4 e^x}{3 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)}+\frac {e^x (-1+3 x)}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )^2}+\frac {e^x (-1+4 x)}{3 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )}\right ) \, dx\\ &=-\left (\frac {4}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 (1+4 x)^2} \, dx\right )+\frac {4}{3} \int \frac {e^x (-1+4 x)}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )} \, dx-\frac {5}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )} \, dx-4 \int \frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2} \, dx-4 \int \frac {e^x}{x^2 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx+4 \int \frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx+4 \int \frac {e^x (-1+3 x)}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )^2} \, dx-\frac {16}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)^2} \, dx-\frac {16}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)} \, dx+\int \frac {e^x (3+x)}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )^2} \, dx\\ &=-\left (\frac {4}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 (1+4 x)^2} \, dx\right )+\frac {4}{3} \int \left (-\frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )}+\frac {4 e^x x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )}\right ) \, dx-\frac {5}{3} \int \left (\frac {8 i e^x}{\sqrt {15} \left (1+i \sqrt {15}-8 x\right ) \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2}+\frac {8 i e^x}{\sqrt {15} \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (-1+i \sqrt {15}+8 x\right )}\right ) \, dx-4 \int \frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2} \, dx-4 \int \frac {e^x}{x^2 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx+4 \int \frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx+4 \int \left (-\frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )^2}+\frac {3 e^x x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )^2}\right ) \, dx-\frac {16}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)^2} \, dx-\frac {16}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)} \, dx+\int \left (\frac {3 e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )^2}+\frac {e^x x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )^2}\right ) \, dx\\ &=-\left (\frac {4}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 (1+4 x)^2} \, dx\right )-\frac {4}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )} \, dx+3 \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )^2} \, dx-4 \int \frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2} \, dx-4 \int \frac {e^x}{x^2 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx+4 \int \frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx-4 \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )^2} \, dx-\frac {16}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)^2} \, dx-\frac {16}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)} \, dx+\frac {16}{3} \int \frac {e^x x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )} \, dx+12 \int \frac {e^x x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )^2} \, dx-\frac {1}{3} \left (8 i \sqrt {\frac {5}{3}}\right ) \int \frac {e^x}{\left (1+i \sqrt {15}-8 x\right ) \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2} \, dx-\frac {1}{3} \left (8 i \sqrt {\frac {5}{3}}\right ) \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (-1+i \sqrt {15}+8 x\right )} \, dx+\int \frac {e^x x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )^2} \, dx\\ &=-\left (\frac {4}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 (1+4 x)^2} \, dx\right )-\frac {4}{3} \int \left (\frac {8 i e^x}{\sqrt {15} \left (1+i \sqrt {15}-8 x\right ) \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )}+\frac {8 i e^x}{\sqrt {15} \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (-1+i \sqrt {15}+8 x\right )}\right ) \, dx+3 \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )^2} \, dx-4 \int \frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2} \, dx-4 \int \frac {e^x}{x^2 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx+4 \int \frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx-4 \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )^2} \, dx-\frac {16}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)^2} \, dx-\frac {16}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)} \, dx+\frac {16}{3} \int \left (\frac {\left (1-\frac {i}{\sqrt {15}}\right ) e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (-1-i \sqrt {15}+8 x\right )}+\frac {\left (1+\frac {i}{\sqrt {15}}\right ) e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (-1+i \sqrt {15}+8 x\right )}\right ) \, dx+12 \int \frac {e^x x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )^2} \, dx-\frac {1}{3} \left (8 i \sqrt {\frac {5}{3}}\right ) \int \frac {e^x}{\left (1+i \sqrt {15}-8 x\right ) \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2} \, dx-\frac {1}{3} \left (8 i \sqrt {\frac {5}{3}}\right ) \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (-1+i \sqrt {15}+8 x\right )} \, dx+\int \frac {e^x x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )^2} \, dx\\ &=-\left (\frac {4}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 (1+4 x)^2} \, dx\right )+3 \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )^2} \, dx-4 \int \frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2} \, dx-4 \int \frac {e^x}{x^2 \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx+4 \int \frac {e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx-4 \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )^2} \, dx-\frac {16}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)^2} \, dx-\frac {16}{3} \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) (1+4 x)} \, dx+12 \int \frac {e^x x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (1-x+4 x^2\right )^2} \, dx-\frac {1}{3} \left (8 i \sqrt {\frac {5}{3}}\right ) \int \frac {e^x}{\left (1+i \sqrt {15}-8 x\right ) \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2} \, dx-\frac {1}{3} \left (8 i \sqrt {\frac {5}{3}}\right ) \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (-1+i \sqrt {15}+8 x\right )} \, dx-\frac {(32 i) \int \frac {e^x}{\left (1+i \sqrt {15}-8 x\right ) \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \, dx}{3 \sqrt {15}}-\frac {(32 i) \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (-1+i \sqrt {15}+8 x\right )} \, dx}{3 \sqrt {15}}+\frac {1}{45} \left (16 \left (15-i \sqrt {15}\right )\right ) \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (-1-i \sqrt {15}+8 x\right )} \, dx+\frac {1}{45} \left (16 \left (15+i \sqrt {15}\right )\right ) \int \frac {e^x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right ) \left (-1+i \sqrt {15}+8 x\right )} \, dx+\int \frac {e^x x}{\left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )^2 \left (1-x+4 x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 33, normalized size = 1.03 \begin {gather*} \frac {4 e^x}{x \left (4 e^{\frac {2 x^2}{1+3 x+16 x^3}}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 31, normalized size = 0.97 \begin {gather*} \frac {4 \, e^{x}}{x^{2} + 4 \, x e^{\left (\frac {2 \, x^{2}}{16 \, x^{3} + 3 \, x + 1}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 1317, normalized size = 41.16 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 39, normalized size = 1.22
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{x}}{x \left (4 \,{\mathrm e}^{\frac {2 x^{2}}{\left (4 x +1\right ) \left (4 x^{2}-x +1\right )}}+x \right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 70, normalized size = 2.19 \begin {gather*} \frac {4 \, e^{\left (x + \frac {1}{12 \, {\left (4 \, x^{2} - x + 1\right )}}\right )}}{x^{2} e^{\left (\frac {1}{12 \, {\left (4 \, x^{2} - x + 1\right )}}\right )} + 4 \, x e^{\left (\frac {5 \, x}{12 \, {\left (4 \, x^{2} - x + 1\right )}} + \frac {1}{12 \, {\left (4 \, x + 1\right )}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.54, size = 31, normalized size = 0.97 \begin {gather*} \frac {4\,{\mathrm {e}}^x}{4\,x\,{\mathrm {e}}^{\frac {2\,x^2}{16\,x^3+3\,x+1}}+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 27, normalized size = 0.84 \begin {gather*} \frac {4 e^{x}}{x^{2} + 4 x e^{\frac {2 x^{2}}{16 x^{3} + 3 x + 1}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________