Optimal. Leaf size=25 \[ -5+x^2+\log \left (-e^{5 e^{-x} x}-\log \left (x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 e^x+e^{5 e^{-x} x} \left (5 x-5 x^2+2 e^x x^2\right )+2 e^x x^2 \log \left (x^2\right )}{e^{x+5 e^{-x} x} x+e^x x \log \left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (2 e^x+e^{5 e^{-x} x} \left (5 x-5 x^2+2 e^x x^2\right )+2 e^x x^2 \log \left (x^2\right )\right )}{x \left (e^{5 e^{-x} x}+\log \left (x^2\right )\right )} \, dx\\ &=\int \left (5 e^{-x}+2 x-5 e^{-x} x+\frac {e^{-x} \left (2 e^x-5 x \log \left (x^2\right )+5 x^2 \log \left (x^2\right )\right )}{x \left (e^{5 e^{-x} x}+\log \left (x^2\right )\right )}\right ) \, dx\\ &=x^2+5 \int e^{-x} \, dx-5 \int e^{-x} x \, dx+\int \frac {e^{-x} \left (2 e^x-5 x \log \left (x^2\right )+5 x^2 \log \left (x^2\right )\right )}{x \left (e^{5 e^{-x} x}+\log \left (x^2\right )\right )} \, dx\\ &=-5 e^{-x}+5 e^{-x} x+x^2-5 \int e^{-x} \, dx+\int \frac {e^{-x} \left (2 e^x+5 (-1+x) x \log \left (x^2\right )\right )}{x \left (e^{5 e^{-x} x}+\log \left (x^2\right )\right )} \, dx\\ &=5 e^{-x} x+x^2+\int \left (\frac {2}{x \left (e^{5 e^{-x} x}+\log \left (x^2\right )\right )}-\frac {5 e^{-x} \log \left (x^2\right )}{e^{5 e^{-x} x}+\log \left (x^2\right )}+\frac {5 e^{-x} x \log \left (x^2\right )}{e^{5 e^{-x} x}+\log \left (x^2\right )}\right ) \, dx\\ &=5 e^{-x} x+x^2+2 \int \frac {1}{x \left (e^{5 e^{-x} x}+\log \left (x^2\right )\right )} \, dx-5 \int \frac {e^{-x} \log \left (x^2\right )}{e^{5 e^{-x} x}+\log \left (x^2\right )} \, dx+5 \int \frac {e^{-x} x \log \left (x^2\right )}{e^{5 e^{-x} x}+\log \left (x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.96, size = 20, normalized size = 0.80 \begin {gather*} x^2+\log \left (e^{5 e^{-x} x}+\log \left (x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 30, normalized size = 1.20 \begin {gather*} x^{2} - x + \log \left (e^{x} \log \left (x^{2}\right ) + e^{\left ({\left (x e^{x} + 5 \, x\right )} e^{\left (-x\right )}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{2} e^{x} \log \left (x^{2}\right ) + {\left (2 \, x^{2} e^{x} - 5 \, x^{2} + 5 \, x\right )} e^{\left (5 \, x e^{\left (-x\right )}\right )} + 2 \, e^{x}}{x e^{x} \log \left (x^{2}\right ) + x e^{\left (5 \, x e^{\left (-x\right )} + x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.40, size = 84, normalized size = 3.36
method | result | size |
risch | \(x \left ({\mathrm e}^{x} x +5\right ) {\mathrm e}^{-x}-5 x \,{\mathrm e}^{-x}+\ln \left ({\mathrm e}^{5 x \,{\mathrm e}^{-x}}-\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )}{2}\right )\) | \(84\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 18, normalized size = 0.72 \begin {gather*} x^{2} + \log \left (e^{\left (5 \, x e^{\left (-x\right )}\right )} + 2 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.23, size = 18, normalized size = 0.72 \begin {gather*} \ln \left (\ln \left (x^2\right )+{\mathrm {e}}^{5\,x\,{\mathrm {e}}^{-x}}\right )+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 17, normalized size = 0.68 \begin {gather*} x^{2} + \log {\left (e^{5 x e^{- x}} + \log {\left (x^{2} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________