Optimal. Leaf size=18 \[ -\frac {3}{x}+\log \left (\log \left (-e+\frac {2 e}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x+(-6+3 x) \log \left (\frac {e (2-x)}{x}\right )}{\left (-2 x^2+x^3\right ) \log \left (\frac {e (2-x)}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x+(-6+3 x) \log \left (\frac {e (2-x)}{x}\right )}{(-2+x) x^2 \log \left (\frac {e (2-x)}{x}\right )} \, dx\\ &=\int \frac {3+\frac {2 x}{(-2+x) \log \left (-\frac {e (-2+x)}{x}\right )}}{x^2} \, dx\\ &=\int \left (\frac {3}{x^2}+\frac {2}{(-2+x) x \log \left (-e+\frac {2 e}{x}\right )}\right ) \, dx\\ &=-\frac {3}{x}+2 \int \frac {1}{(-2+x) x \log \left (-e+\frac {2 e}{x}\right )} \, dx\\ &=-\frac {3}{x}+2 \int \left (\frac {1}{2 (-2+x) \log \left (-e+\frac {2 e}{x}\right )}-\frac {1}{2 x \log \left (-e+\frac {2 e}{x}\right )}\right ) \, dx\\ &=-\frac {3}{x}+\int \frac {1}{(-2+x) \log \left (-e+\frac {2 e}{x}\right )} \, dx-\int \frac {1}{x \log \left (-e+\frac {2 e}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.02, size = 17, normalized size = 0.94 \begin {gather*} -\frac {3}{x}+\log \left (\log \left (-\frac {e (-2+x)}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 20, normalized size = 1.11 \begin {gather*} \frac {x \log \left (\log \left (-\frac {{\left (x - 2\right )} e}{x}\right )\right ) - 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 39, normalized size = 2.17 \begin {gather*} \frac {1}{2} \, {\left (2 \, e \log \left (\log \left (-\frac {x e - 2 \, e}{x}\right )\right ) + \frac {3 \, {\left (x e - 2 \, e\right )}}{x}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 20, normalized size = 1.11
method | result | size |
norman | \(-\frac {3}{x}+\ln \left (\ln \left (\frac {\left (2-x \right ) {\mathrm e}}{x}\right )\right )\) | \(20\) |
risch | \(-\frac {3}{x}+\ln \left (\ln \left (\frac {\left (2-x \right ) {\mathrm e}}{x}\right )\right )\) | \(20\) |
derivativedivides | \(-\frac {{\mathrm e} \left (6 \,{\mathrm e}^{-2} \left (\frac {2 \,{\mathrm e}}{x}-{\mathrm e}\right )-4 \,{\mathrm e}^{-1} \ln \left (\ln \left (\frac {2 \,{\mathrm e}}{x}-{\mathrm e}\right )\right )\right )}{4}\) | \(44\) |
default | \(-\frac {{\mathrm e} \left (6 \,{\mathrm e}^{-2} \left (\frac {2 \,{\mathrm e}}{x}-{\mathrm e}\right )-4 \,{\mathrm e}^{-1} \ln \left (\ln \left (\frac {2 \,{\mathrm e}}{x}-{\mathrm e}\right )\right )\right )}{4}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 103, normalized size = 5.72 \begin {gather*} \frac {3}{2} \, {\left (e^{\left (-1\right )} \log \left (\frac {2 \, e}{x} - e\right ) \log \left (-\log \relax (x) + \log \left (-x + 2\right ) + 1\right ) + {\left ({\left (\log \relax (x) - \log \left (-x + 2\right ) - 1\right )} \log \left (-\log \relax (x) + \log \left (-x + 2\right ) + 1\right ) - \log \relax (x) + \log \left (-x + 2\right )\right )} e^{\left (-1\right )}\right )} e - \frac {3}{x} - \frac {3}{2} \, \log \left (x - 2\right ) + \frac {3}{2} \, \log \relax (x) + \log \left (-\log \relax (x) + \log \left (-x + 2\right ) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.97, size = 18, normalized size = 1.00 \begin {gather*} \ln \left (\ln \left (-\frac {\mathrm {e}\,\left (x-2\right )}{x}\right )\right )-\frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 14, normalized size = 0.78 \begin {gather*} \log {\left (\log {\left (\frac {e \left (2 - x\right )}{x} \right )} \right )} - \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________