Optimal. Leaf size=19 \[ x^2 \left (4+\frac {1}{2 x \log \left (x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 17, normalized size of antiderivative = 0.89, number of steps used = 8, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {12, 6742, 2297, 2300, 2178} \begin {gather*} 4 x^2+\frac {x}{2 \log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2297
Rule 2300
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-2+\log \left (x^2\right )+16 x \log ^2\left (x^2\right )}{\log ^2\left (x^2\right )} \, dx\\ &=\frac {1}{2} \int \left (16 x-\frac {2}{\log ^2\left (x^2\right )}+\frac {1}{\log \left (x^2\right )}\right ) \, dx\\ &=4 x^2+\frac {1}{2} \int \frac {1}{\log \left (x^2\right )} \, dx-\int \frac {1}{\log ^2\left (x^2\right )} \, dx\\ &=4 x^2+\frac {x}{2 \log \left (x^2\right )}-\frac {1}{2} \int \frac {1}{\log \left (x^2\right )} \, dx+\frac {x \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{4 \sqrt {x^2}}\\ &=4 x^2+\frac {x \text {Ei}\left (\frac {\log \left (x^2\right )}{2}\right )}{4 \sqrt {x^2}}+\frac {x}{2 \log \left (x^2\right )}-\frac {x \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{4 \sqrt {x^2}}\\ &=4 x^2+\frac {x}{2 \log \left (x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 17, normalized size = 0.89 \begin {gather*} 4 x^2+\frac {x}{2 \log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 19, normalized size = 1.00 \begin {gather*} \frac {8 \, x^{2} \log \left (x^{2}\right ) + x}{2 \, \log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 15, normalized size = 0.79 \begin {gather*} 4 \, x^{2} + \frac {x}{2 \, \log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.84
method | result | size |
risch | \(4 x^{2}+\frac {x}{2 \ln \left (x^{2}\right )}\) | \(16\) |
norman | \(\frac {\frac {x}{2}+4 x^{2} \ln \left (x^{2}\right )}{\ln \left (x^{2}\right )}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 13, normalized size = 0.68 \begin {gather*} 4 \, x^{2} + \frac {x}{4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.22, size = 15, normalized size = 0.79 \begin {gather*} \frac {x}{2\,\ln \left (x^2\right )}+4\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 12, normalized size = 0.63 \begin {gather*} 4 x^{2} + \frac {x}{2 \log {\left (x^{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________