Optimal. Leaf size=31 \[ \frac {2 \left (4-e^5+e^x (3+x)+\frac {x+\frac {\log (x)}{x}}{e^4}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 56, normalized size of antiderivative = 1.81, number of steps used = 14, number of rules used = 9, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {6, 12, 14, 2199, 2194, 2177, 2178, 37, 2304} \begin {gather*} -\frac {\left (1-e^4 \left (4-e^5\right ) x\right )^2}{e^4 x^2}+\frac {1}{e^4 x^2}+\frac {2 \log (x)}{e^4 x^2}+2 e^x+\frac {6 e^x}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 37
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+\left (-8 e^4+2 e^9\right ) x+e^{4+x} \left (-6 x+6 x^2+2 x^3\right )-4 \log (x)}{e^4 x^3} \, dx\\ &=\frac {\int \frac {2+\left (-8 e^4+2 e^9\right ) x+e^{4+x} \left (-6 x+6 x^2+2 x^3\right )-4 \log (x)}{x^3} \, dx}{e^4}\\ &=\frac {\int \left (\frac {2 e^{4+x} \left (-3+3 x+x^2\right )}{x^2}+\frac {2 \left (1-4 e^4 \left (1-\frac {e^5}{4}\right ) x-2 \log (x)\right )}{x^3}\right ) \, dx}{e^4}\\ &=\frac {2 \int \frac {e^{4+x} \left (-3+3 x+x^2\right )}{x^2} \, dx}{e^4}+\frac {2 \int \frac {1-4 e^4 \left (1-\frac {e^5}{4}\right ) x-2 \log (x)}{x^3} \, dx}{e^4}\\ &=\frac {2 \int \left (e^{4+x}-\frac {3 e^{4+x}}{x^2}+\frac {3 e^{4+x}}{x}\right ) \, dx}{e^4}+\frac {2 \int \left (\frac {1-e^4 \left (4-e^5\right ) x}{x^3}-\frac {2 \log (x)}{x^3}\right ) \, dx}{e^4}\\ &=\frac {2 \int e^{4+x} \, dx}{e^4}+\frac {2 \int \frac {1-e^4 \left (4-e^5\right ) x}{x^3} \, dx}{e^4}-\frac {4 \int \frac {\log (x)}{x^3} \, dx}{e^4}-\frac {6 \int \frac {e^{4+x}}{x^2} \, dx}{e^4}+\frac {6 \int \frac {e^{4+x}}{x} \, dx}{e^4}\\ &=2 e^x+\frac {1}{e^4 x^2}+\frac {6 e^x}{x}-\frac {\left (1-e^4 \left (4-e^5\right ) x\right )^2}{e^4 x^2}+6 \text {Ei}(x)+\frac {2 \log (x)}{e^4 x^2}-\frac {6 \int \frac {e^{4+x}}{x} \, dx}{e^4}\\ &=2 e^x+\frac {1}{e^4 x^2}+\frac {6 e^x}{x}-\frac {\left (1-e^4 \left (4-e^5\right ) x\right )^2}{e^4 x^2}+\frac {2 \log (x)}{e^4 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 30, normalized size = 0.97 \begin {gather*} \frac {2 \left (-e^4 x \left (-4+e^5-e^x (3+x)\right )+\log (x)\right )}{e^4 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 34, normalized size = 1.10 \begin {gather*} -\frac {2 \, {\left (x e^{9} - 4 \, x e^{4} - {\left (x^{2} + 3 \, x\right )} e^{\left (x + 4\right )} - \log \relax (x)\right )} e^{\left (-4\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 35, normalized size = 1.13 \begin {gather*} \frac {2 \, {\left (x^{2} e^{\left (x + 4\right )} - x e^{9} + 4 \, x e^{4} + 3 \, x e^{\left (x + 4\right )} + \log \relax (x)\right )} e^{\left (-4\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 0.94
method | result | size |
risch | \(\frac {2 \,{\mathrm e}^{-4} \ln \relax (x )}{x^{2}}-\frac {2 \left ({\mathrm e}^{5}-{\mathrm e}^{x} x -3 \,{\mathrm e}^{x}-4\right )}{x}\) | \(29\) |
norman | \(\frac {\left (-2 \,{\mathrm e}^{5}+8\right ) x +6 \,{\mathrm e}^{x} x +2 \,{\mathrm e}^{x} x^{2}+2 \,{\mathrm e}^{-4} \ln \relax (x )}{x^{2}}\) | \(34\) |
default | \({\mathrm e}^{-4} \left (-\frac {2 \left ({\mathrm e}^{9}-4 \,{\mathrm e}^{4}\right )}{x}+\frac {2 \ln \relax (x )}{x^{2}}+2 \,{\mathrm e}^{4} \left (\frac {3 \,{\mathrm e}^{x}}{x}+{\mathrm e}^{x}\right )\right )\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 44, normalized size = 1.42 \begin {gather*} 2 \, {\left (3 \, {\rm Ei}\relax (x) e^{4} - 3 \, e^{4} \Gamma \left (-1, -x\right ) - \frac {e^{9}}{x} + \frac {4 \, e^{4}}{x} + \frac {\log \relax (x)}{x^{2}} + e^{\left (x + 4\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.27, size = 28, normalized size = 0.90 \begin {gather*} 2\,{\mathrm {e}}^x+\frac {x\,\left (6\,{\mathrm {e}}^x-2\,{\mathrm {e}}^5+8\right )+2\,{\mathrm {e}}^{-4}\,\ln \relax (x)}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 29, normalized size = 0.94 \begin {gather*} \frac {\left (2 x + 6\right ) e^{x}}{x} - \frac {-8 + 2 e^{5}}{x} + \frac {2 \log {\relax (x )}}{x^{2} e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________