Optimal. Leaf size=33 \[ x^2 \log ^2\left (\frac {5}{x \log \left ((4-x)^2 x \left (-e^2+2 x\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 3.79, antiderivative size = 32, normalized size of antiderivative = 0.97, number of steps used = 3, number of rules used = 7, integrand size = 290, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6688, 12, 14, 6742, 30, 2555, 6687} \begin {gather*} x^2 \log ^2\left (\frac {5}{x \log \left (-\left (\left (e^2-2 x\right ) (4-x)^2 x\right )\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 30
Rule 2555
Rule 6687
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 2 x \log \left (\frac {5}{x \log \left (-\left (\left (e^2-2 x\right ) (-4+x)^2 x\right )\right )}\right ) \left (\frac {e^2 (4-3 x)+8 (-2+x) x-\left (e^2-2 x\right ) (-4+x) \log \left (-\left (\left (e^2-2 x\right ) (-4+x)^2 x\right )\right )}{\left (e^2-2 x\right ) (-4+x) \log \left (-\left (\left (e^2-2 x\right ) (-4+x)^2 x\right )\right )}+\log \left (\frac {5}{x \log \left (-\left (\left (e^2-2 x\right ) (-4+x)^2 x\right )\right )}\right )\right ) \, dx\\ &=2 \int x \log \left (\frac {5}{x \log \left (-\left (\left (e^2-2 x\right ) (-4+x)^2 x\right )\right )}\right ) \left (\frac {e^2 (4-3 x)+8 (-2+x) x-\left (e^2-2 x\right ) (-4+x) \log \left (-\left (\left (e^2-2 x\right ) (-4+x)^2 x\right )\right )}{\left (e^2-2 x\right ) (-4+x) \log \left (-\left (\left (e^2-2 x\right ) (-4+x)^2 x\right )\right )}+\log \left (\frac {5}{x \log \left (-\left (\left (e^2-2 x\right ) (-4+x)^2 x\right )\right )}\right )\right ) \, dx\\ &=x^2 \log ^2\left (\frac {5}{x \log \left (-\left (\left (e^2-2 x\right ) (4-x)^2 x\right )\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.54, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (-32 x^2+16 x^3+e^2 \left (8 x-6 x^2\right )+\left (-16 x^2+4 x^3+e^2 \left (8 x-2 x^2\right )\right ) \log \left (32 x^2-16 x^3+2 x^4+e^2 \left (-16 x+8 x^2-x^3\right )\right )\right ) \log \left (\frac {5}{x \log \left (32 x^2-16 x^3+2 x^4+e^2 \left (-16 x+8 x^2-x^3\right )\right )}\right )+\left (16 x^2-4 x^3+e^2 \left (-8 x+2 x^2\right )\right ) \log \left (32 x^2-16 x^3+2 x^4+e^2 \left (-16 x+8 x^2-x^3\right )\right ) \log ^2\left (\frac {5}{x \log \left (32 x^2-16 x^3+2 x^4+e^2 \left (-16 x+8 x^2-x^3\right )\right )}\right )}{\left (e^2 (-4+x)+8 x-2 x^2\right ) \log \left (32 x^2-16 x^3+2 x^4+e^2 \left (-16 x+8 x^2-x^3\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 47, normalized size = 1.42 \begin {gather*} x^{2} \log \left (\frac {5}{x \log \left (2 \, x^{4} - 16 \, x^{3} + 32 \, x^{2} - {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} e^{2}\right )}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (2 \, x^{3} - 8 \, x^{2} - {\left (x^{2} - 4 \, x\right )} e^{2}\right )} \log \left (2 \, x^{4} - 16 \, x^{3} + 32 \, x^{2} - {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} e^{2}\right ) \log \left (\frac {5}{x \log \left (2 \, x^{4} - 16 \, x^{3} + 32 \, x^{2} - {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} e^{2}\right )}\right )^{2} - {\left (8 \, x^{3} - 16 \, x^{2} - {\left (3 \, x^{2} - 4 \, x\right )} e^{2} + {\left (2 \, x^{3} - 8 \, x^{2} - {\left (x^{2} - 4 \, x\right )} e^{2}\right )} \log \left (2 \, x^{4} - 16 \, x^{3} + 32 \, x^{2} - {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} e^{2}\right )\right )} \log \left (\frac {5}{x \log \left (2 \, x^{4} - 16 \, x^{3} + 32 \, x^{2} - {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} e^{2}\right )}\right )\right )}}{{\left (2 \, x^{2} - {\left (x - 4\right )} e^{2} - 8 \, x\right )} \log \left (2 \, x^{4} - 16 \, x^{3} + 32 \, x^{2} - {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} e^{2}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.14, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (2 x^{2}-8 x \right ) {\mathrm e}^{2}-4 x^{3}+16 x^{2}\right ) \ln \left (\left (-x^{3}+8 x^{2}-16 x \right ) {\mathrm e}^{2}+2 x^{4}-16 x^{3}+32 x^{2}\right ) \ln \left (\frac {5}{x \ln \left (\left (-x^{3}+8 x^{2}-16 x \right ) {\mathrm e}^{2}+2 x^{4}-16 x^{3}+32 x^{2}\right )}\right )^{2}+\left (\left (\left (-2 x^{2}+8 x \right ) {\mathrm e}^{2}+4 x^{3}-16 x^{2}\right ) \ln \left (\left (-x^{3}+8 x^{2}-16 x \right ) {\mathrm e}^{2}+2 x^{4}-16 x^{3}+32 x^{2}\right )+\left (-6 x^{2}+8 x \right ) {\mathrm e}^{2}+16 x^{3}-32 x^{2}\right ) \ln \left (\frac {5}{x \ln \left (\left (-x^{3}+8 x^{2}-16 x \right ) {\mathrm e}^{2}+2 x^{4}-16 x^{3}+32 x^{2}\right )}\right )}{\left (\left (x -4\right ) {\mathrm e}^{2}-2 x^{2}+8 x \right ) \ln \left (\left (-x^{3}+8 x^{2}-16 x \right ) {\mathrm e}^{2}+2 x^{4}-16 x^{3}+32 x^{2}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 86, normalized size = 2.61 \begin {gather*} x^{2} \log \relax (5)^{2} - 2 \, x^{2} \log \relax (5) \log \relax (x) + x^{2} \log \relax (x)^{2} + x^{2} \log \left (\log \left (2 \, x - e^{2}\right ) + 2 \, \log \left (x - 4\right ) + \log \relax (x)\right )^{2} - 2 \, {\left (x^{2} \log \relax (5) - x^{2} \log \relax (x)\right )} \log \left (\log \left (2 \, x - e^{2}\right ) + 2 \, \log \left (x - 4\right ) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.96, size = 47, normalized size = 1.42 \begin {gather*} x^2\,{\ln \left (\frac {5}{x\,\ln \left (32\,x^2-{\mathrm {e}}^2\,\left (x^3-8\,x^2+16\,x\right )-16\,x^3+2\,x^4\right )}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: CoercionFailed} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________