Optimal. Leaf size=33 \[ -1-x+\frac {x}{\left (e^{e^5}+\frac {x}{2}\right ) (x-\log (\log (5+x+\log (3))))} \]
________________________________________________________________________________________
Rubi [F] time = 13.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 e^{e^5} x+2 x^2+\left (-10 x^2-2 x^3-5 x^4-x^5+\left (-2 x^2-x^4\right ) \log (3)+e^{2 e^5} \left (-20 x^2-4 x^3-4 x^2 \log (3)\right )+e^{e^5} \left (-20 x^3-4 x^4-4 x^3 \log (3)\right )\right ) \log (5+x+\log (3))+\left (10 x^3+2 x^4+2 x^3 \log (3)+e^{2 e^5} \left (40 x+8 x^2+8 x \log (3)\right )+e^{e^5} \left (-20-4 x+40 x^2+8 x^3+\left (-4+8 x^2\right ) \log (3)\right )\right ) \log (5+x+\log (3)) \log (\log (5+x+\log (3)))+\left (-5 x^2-x^3+e^{2 e^5} (-20-4 x-4 \log (3))-x^2 \log (3)+e^{e^5} \left (-20 x-4 x^2-4 x \log (3)\right )\right ) \log (5+x+\log (3)) \log ^2(\log (5+x+\log (3)))}{\left (5 x^4+x^5+x^4 \log (3)+e^{2 e^5} \left (20 x^2+4 x^3+4 x^2 \log (3)\right )+e^{e^5} \left (20 x^3+4 x^4+4 x^3 \log (3)\right )\right ) \log (5+x+\log (3))+\left (-10 x^3-2 x^4-2 x^3 \log (3)+e^{2 e^5} \left (-40 x-8 x^2-8 x \log (3)\right )+e^{e^5} \left (-40 x^2-8 x^3-8 x^2 \log (3)\right )\right ) \log (5+x+\log (3)) \log (\log (5+x+\log (3)))+\left (5 x^2+x^3+x^2 \log (3)+e^{2 e^5} (20+4 x+4 \log (3))+e^{e^5} \left (20 x+4 x^2+4 x \log (3)\right )\right ) \log (5+x+\log (3)) \log ^2(\log (5+x+\log (3)))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (2 e^{e^5}+x\right )-\log (5+x+\log (3)) \left (x^2 \left (10+2 x+x^3+x^2 (5+\log (3))+\log (9)+e^{2 e^5} (20+4 x+\log (81))+e^{e^5} x (20+4 x+\log (81))\right )-\left (8 e^{2 e^5} x (5+x+\log (3))+4 e^{e^5} \left (-1+2 x^2\right ) (5+x+\log (3))+x^3 (10+2 x+\log (9))\right ) \log (\log (5+x+\log (3)))+\left (2 e^{e^5}+x\right )^2 (5+x+\log (3)) \log ^2(\log (5+x+\log (3)))\right )}{\left (2 e^{e^5}+x\right )^2 (5+x+\log (3)) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2} \, dx\\ &=\int \left (-1+\frac {x \left (4 e^{e^5}+2 x-2 x^2 \log (5+x+\log (3))-20 e^{e^5} \left (1+\frac {\log (3)}{5}\right ) \log (5+x+\log (3))-10 x \left (1+\frac {1}{5} \left (2 e^{e^5}+\log (3)\right )\right ) \log (5+x+\log (3))\right )}{\left (2 e^{e^5}+x\right )^2 (5+x+\log (3)) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2}+\frac {4 e^{e^5}}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))}\right ) \, dx\\ &=-x+\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))} \, dx+\int \frac {x \left (4 e^{e^5}+2 x-2 x^2 \log (5+x+\log (3))-20 e^{e^5} \left (1+\frac {\log (3)}{5}\right ) \log (5+x+\log (3))-10 x \left (1+\frac {1}{5} \left (2 e^{e^5}+\log (3)\right )\right ) \log (5+x+\log (3))\right )}{\left (2 e^{e^5}+x\right )^2 (5+x+\log (3)) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2} \, dx\\ &=-x+\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))} \, dx+\int \frac {2 x (1-(5+x+\log (3)) \log (5+x+\log (3)))}{\left (2 e^{e^5}+x\right ) (5+x+\log (3)) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2} \, dx\\ &=-x+2 \int \frac {x (1-(5+x+\log (3)) \log (5+x+\log (3)))}{\left (2 e^{e^5}+x\right ) (5+x+\log (3)) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2} \, dx+\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))} \, dx\\ &=-x+2 \int \left (\frac {(5+\log (3)) \left (1-x \log (5+x+\log (3))-5 \left (1+\frac {\log (3)}{5}\right ) \log (5+x+\log (3))\right )}{\left (5-2 e^{e^5}+\log (3)\right ) (5+x+\log (3)) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2}+\frac {2 e^{e^5} \left (-1+x \log (5+x+\log (3))+5 \left (1+\frac {\log (3)}{5}\right ) \log (5+x+\log (3))\right )}{\left (2 e^{e^5}+x\right ) \left (5-2 e^{e^5}+\log (3)\right ) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2}\right ) \, dx+\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))} \, dx\\ &=-x+\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))} \, dx+\frac {\left (4 e^{e^5}\right ) \int \frac {-1+x \log (5+x+\log (3))+5 \left (1+\frac {\log (3)}{5}\right ) \log (5+x+\log (3))}{\left (2 e^{e^5}+x\right ) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}+\frac {(2 (5+\log (3))) \int \frac {1-x \log (5+x+\log (3))-5 \left (1+\frac {\log (3)}{5}\right ) \log (5+x+\log (3))}{(5+x+\log (3)) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}\\ &=-x+\frac {2 (5+\log (3))}{\left (5-2 e^{e^5}+\log (3)\right ) (x-\log (\log (5+x+\log (3))))}+\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))} \, dx+\frac {\left (4 e^{e^5}\right ) \int \frac {-1+(5+x+\log (3)) \log (5+x+\log (3))}{\left (2 e^{e^5}+x\right ) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}\\ &=-x+\frac {2 (5+\log (3))}{\left (5-2 e^{e^5}+\log (3)\right ) (x-\log (\log (5+x+\log (3))))}+\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))} \, dx+\frac {\left (4 e^{e^5}\right ) \int \left (\frac {x}{\left (2 e^{e^5}+x\right ) (x-\log (\log (5+x+\log (3))))^2}+\frac {5 \left (1+\frac {\log (3)}{5}\right )}{\left (2 e^{e^5}+x\right ) (x-\log (\log (5+x+\log (3))))^2}-\frac {1}{\left (2 e^{e^5}+x\right ) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2}\right ) \, dx}{5-2 e^{e^5}+\log (3)}\\ &=-x+\frac {2 (5+\log (3))}{\left (5-2 e^{e^5}+\log (3)\right ) (x-\log (\log (5+x+\log (3))))}+\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))} \, dx+\frac {\left (4 e^{e^5}\right ) \int \frac {x}{\left (2 e^{e^5}+x\right ) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}-\frac {\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right ) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}+\frac {\left (4 e^{e^5} (5+\log (3))\right ) \int \frac {1}{\left (2 e^{e^5}+x\right ) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}\\ &=-x+\frac {2 (5+\log (3))}{\left (5-2 e^{e^5}+\log (3)\right ) (x-\log (\log (5+x+\log (3))))}+\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))} \, dx+\frac {\left (4 e^{e^5}\right ) \int \left (\frac {1}{(x-\log (\log (5+x+\log (3))))^2}-\frac {2 e^{e^5}}{\left (2 e^{e^5}+x\right ) (x-\log (\log (5+x+\log (3))))^2}\right ) \, dx}{5-2 e^{e^5}+\log (3)}-\frac {\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right ) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}+\frac {\left (4 e^{e^5} (5+\log (3))\right ) \int \frac {1}{\left (2 e^{e^5}+x\right ) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}\\ &=-x+\frac {2 (5+\log (3))}{\left (5-2 e^{e^5}+\log (3)\right ) (x-\log (\log (5+x+\log (3))))}+\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right )^2 (x-\log (\log (5+x+\log (3))))} \, dx+\frac {\left (4 e^{e^5}\right ) \int \frac {1}{(x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}-\frac {\left (4 e^{e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right ) \log (5+x+\log (3)) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}-\frac {\left (8 e^{2 e^5}\right ) \int \frac {1}{\left (2 e^{e^5}+x\right ) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}+\frac {\left (4 e^{e^5} (5+\log (3))\right ) \int \frac {1}{\left (2 e^{e^5}+x\right ) (x-\log (\log (5+x+\log (3))))^2} \, dx}{5-2 e^{e^5}+\log (3)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.49, size = 87, normalized size = 2.64 \begin {gather*} x \left (-1+\frac {-2 \left (2 e^{e^5}+x\right )+\left (x (10+2 x+\log (9))+e^{e^5} (20+4 x+\log (81))\right ) \log (5+x+\log (3))}{\left (2 e^{e^5}+x\right )^2 (-1+(5+x+\log (3)) \log (5+x+\log (3))) (x-\log (\log (5+x+\log (3))))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 64, normalized size = 1.94 \begin {gather*} -\frac {x^{3} + 2 \, x^{2} e^{\left (e^{5}\right )} - {\left (x^{2} + 2 \, x e^{\left (e^{5}\right )}\right )} \log \left (\log \left (x + \log \relax (3) + 5\right )\right ) - 2 \, x}{x^{2} + 2 \, x e^{\left (e^{5}\right )} - {\left (x + 2 \, e^{\left (e^{5}\right )}\right )} \log \left (\log \left (x + \log \relax (3) + 5\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.37, size = 76, normalized size = 2.30 \begin {gather*} -\frac {x^{3} + 2 \, x^{2} e^{\left (e^{5}\right )} - x^{2} \log \left (\log \left (x + \log \relax (3) + 5\right )\right ) - 2 \, x e^{\left (e^{5}\right )} \log \left (\log \left (x + \log \relax (3) + 5\right )\right ) - 2 \, x}{x^{2} + 2 \, x e^{\left (e^{5}\right )} - x \log \left (\log \left (x + \log \relax (3) + 5\right )\right ) - 2 \, e^{\left (e^{5}\right )} \log \left (\log \left (x + \log \relax (3) + 5\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.84, size = 30, normalized size = 0.91
method | result | size |
risch | \(-x +\frac {2 x}{\left (2 \,{\mathrm e}^{{\mathrm e}^{5}}+x \right ) \left (x -\ln \left (\ln \left (\ln \relax (3)+5+x \right )\right )\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.72, size = 64, normalized size = 1.94 \begin {gather*} -\frac {x^{3} + 2 \, x^{2} e^{\left (e^{5}\right )} - {\left (x^{2} + 2 \, x e^{\left (e^{5}\right )}\right )} \log \left (\log \left (x + \log \relax (3) + 5\right )\right ) - 2 \, x}{x^{2} + 2 \, x e^{\left (e^{5}\right )} - {\left (x + 2 \, e^{\left (e^{5}\right )}\right )} \log \left (\log \left (x + \log \relax (3) + 5\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 36, normalized size = 1.09 \begin {gather*} - x - \frac {2 x}{- x^{2} - 2 x e^{e^{5}} + \left (x + 2 e^{e^{5}}\right ) \log {\left (\log {\left (x + \log {\relax (3 )} + 5 \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________