Optimal. Leaf size=26 \[ \frac {\left (3+e^{10}+\frac {e^{6+2 x}}{x^2}-\log (x)\right )^2}{e^8} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 52, normalized size of antiderivative = 2.00, number of steps used = 7, number of rules used = 6, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {6, 12, 14, 2197, 2301, 2288} \begin {gather*} \frac {e^{4 x+4}}{x^4}+\frac {2 e^{2 x-2} \left (\left (3+e^{10}\right ) x-x \log (x)\right )}{x^3}+\frac {\left (-\log (x)+e^{10}+3\right )^2}{e^8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 2197
Rule 2288
Rule 2301
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-6-2 e^{10}\right ) x^4+e^{12+4 x} (-4+4 x)+e^{6+2 x} \left (-14 x^2+12 x^3+e^{10} \left (-4 x^2+4 x^3\right )\right )+\left (2 x^4+e^{6+2 x} \left (4 x^2-4 x^3\right )\right ) \log (x)}{e^8 x^5} \, dx\\ &=\frac {\int \frac {\left (-6-2 e^{10}\right ) x^4+e^{12+4 x} (-4+4 x)+e^{6+2 x} \left (-14 x^2+12 x^3+e^{10} \left (-4 x^2+4 x^3\right )\right )+\left (2 x^4+e^{6+2 x} \left (4 x^2-4 x^3\right )\right ) \log (x)}{x^5} \, dx}{e^8}\\ &=\frac {\int \left (\frac {4 e^{12+4 x} (-1+x)}{x^5}+\frac {2 \left (-3 \left (1+\frac {e^{10}}{3}\right )+\log (x)\right )}{x}+\frac {2 e^{6+2 x} \left (-7 \left (1+\frac {2 e^{10}}{7}\right )+6 \left (1+\frac {e^{10}}{3}\right ) x+2 \log (x)-2 x \log (x)\right )}{x^3}\right ) \, dx}{e^8}\\ &=\frac {2 \int \frac {-3 \left (1+\frac {e^{10}}{3}\right )+\log (x)}{x} \, dx}{e^8}+\frac {2 \int \frac {e^{6+2 x} \left (-7 \left (1+\frac {2 e^{10}}{7}\right )+6 \left (1+\frac {e^{10}}{3}\right ) x+2 \log (x)-2 x \log (x)\right )}{x^3} \, dx}{e^8}+\frac {4 \int \frac {e^{12+4 x} (-1+x)}{x^5} \, dx}{e^8}\\ &=\frac {e^{4+4 x}}{x^4}+\frac {\left (3+e^{10}-\log (x)\right )^2}{e^8}+\frac {2 e^{-2+2 x} \left (\left (3+e^{10}\right ) x-x \log (x)\right )}{x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 36, normalized size = 1.38 \begin {gather*} \frac {\left (e^{6+2 x}+3 x^2+e^{10} x^2-x^2 \log (x)\right )^2}{e^8 x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.01, size = 67, normalized size = 2.58 \begin {gather*} \frac {{\left (x^{4} \log \relax (x)^{2} + 2 \, {\left (x^{2} e^{10} + 3 \, x^{2}\right )} e^{\left (2 \, x + 6\right )} - 2 \, {\left (x^{4} e^{10} + 3 \, x^{4} + x^{2} e^{\left (2 \, x + 6\right )}\right )} \log \relax (x) + e^{\left (4 \, x + 12\right )}\right )} e^{\left (-8\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 76, normalized size = 2.92 \begin {gather*} -\frac {{\left (2 \, x^{4} e^{10} \log \relax (x) - x^{4} \log \relax (x)^{2} + 6 \, x^{4} \log \relax (x) + 2 \, x^{2} e^{\left (2 \, x + 6\right )} \log \relax (x) - 2 \, x^{2} e^{\left (2 \, x + 16\right )} - 6 \, x^{2} e^{\left (2 \, x + 6\right )} - e^{\left (4 \, x + 12\right )}\right )} e^{\left (-8\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 59, normalized size = 2.27
method | result | size |
default | \({\mathrm e}^{-8} \left (\frac {\left (2 \,{\mathrm e}^{10}+6\right ) {\mathrm e}^{2 x +6}-2 \ln \relax (x ) {\mathrm e}^{2 x +6}}{x^{2}}-2 \ln \relax (x ) {\mathrm e}^{10}-6 \ln \relax (x )+\ln \relax (x )^{2}+\frac {{\mathrm e}^{4 x +12}}{x^{4}}\right )\) | \(59\) |
risch | \({\mathrm e}^{-8} \ln \relax (x )^{2}-\frac {2 \ln \relax (x ) {\mathrm e}^{2 x -2}}{x^{2}}-\frac {{\mathrm e}^{-8} \left (2 \,{\mathrm e}^{10} \ln \relax (x ) x^{4}-2 x^{2} {\mathrm e}^{2 x +16}+6 x^{4} \ln \relax (x )-6 \,{\mathrm e}^{2 x +6} x^{2}-{\mathrm e}^{4 x +12}\right )}{x^{4}}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} {\left (8 \, e^{16} \Gamma \left (-1, -2 \, x\right ) + 24 \, e^{6} \Gamma \left (-1, -2 \, x\right ) + 16 \, e^{16} \Gamma \left (-2, -2 \, x\right ) + 56 \, e^{6} \Gamma \left (-2, -2 \, x\right ) + 256 \, e^{12} \Gamma \left (-3, -4 \, x\right ) + 1024 \, e^{12} \Gamma \left (-4, -4 \, x\right ) - 2 \, e^{10} \log \relax (x) + \log \relax (x)^{2} - \frac {2 \, e^{\left (2 \, x + 6\right )} \log \relax (x)}{x^{2}} + 2 \, \int \frac {e^{\left (2 \, x + 6\right )}}{x^{3}}\,{d x} - 6 \, \log \relax (x)\right )} e^{\left (-8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{-8}\,\left ({\mathrm {e}}^{2\,x+6}\,\left ({\mathrm {e}}^{10}\,\left (4\,x^2-4\,x^3\right )+14\,x^2-12\,x^3\right )-{\mathrm {e}}^{4\,x+12}\,\left (4\,x-4\right )+2\,x^4\,{\mathrm {e}}^{10}-\ln \relax (x)\,\left ({\mathrm {e}}^{2\,x+6}\,\left (4\,x^2-4\,x^3\right )+2\,x^4\right )+6\,x^4\right )}{x^5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.43, size = 78, normalized size = 3.00 \begin {gather*} \frac {\log {\relax (x )}^{2}}{e^{8}} + \frac {\left (- 2 e^{10} - 6\right ) \log {\relax (x )}}{e^{8}} + \frac {x^{2} e^{8} e^{4 x + 12} + \left (- 2 x^{4} e^{8} \log {\relax (x )} + 6 x^{4} e^{8} + 2 x^{4} e^{18}\right ) e^{2 x + 6}}{x^{6} e^{16}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________