Optimal. Leaf size=20 \[ 8000 x (-5+x+\log (x))^2 \log ^2\left (e^5+5 x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (2000000 x-800000 x^2+80000 x^3+\left (-800000 x+160000 x^2\right ) \log (x)+80000 x \log ^2(x)\right ) \log \left (e^5+5 x\right )+\left (600000 x-720000 x^2+120000 x^3+e^5 \left (120000-144000 x+24000 x^2\right )+\left (-320000 x+160000 x^2+e^5 (-64000+32000 x)\right ) \log (x)+\left (8000 e^5+40000 x\right ) \log ^2(x)\right ) \log ^2\left (e^5+5 x\right )}{e^5+5 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8000 (5-x-\log (x)) \log \left (e^5+5 x\right ) \left (-10 (-5+x) x-3 (-1+x) \left (e^5+5 x\right ) \log \left (e^5+5 x\right )-\log (x) \left (10 x+\left (e^5+5 x\right ) \log \left (e^5+5 x\right )\right )\right )}{e^5+5 x} \, dx\\ &=8000 \int \frac {(5-x-\log (x)) \log \left (e^5+5 x\right ) \left (-10 (-5+x) x-3 (-1+x) \left (e^5+5 x\right ) \log \left (e^5+5 x\right )-\log (x) \left (10 x+\left (e^5+5 x\right ) \log \left (e^5+5 x\right )\right )\right )}{e^5+5 x} \, dx\\ &=8000 \int \left (\frac {10 x (-5+x+\log (x))^2 \log \left (e^5+5 x\right )}{e^5+5 x}+\left (15-18 x+3 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right ) \log ^2\left (e^5+5 x\right )\right ) \, dx\\ &=8000 \int \left (15-18 x+3 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right ) \log ^2\left (e^5+5 x\right ) \, dx+80000 \int \frac {x (-5+x+\log (x))^2 \log \left (e^5+5 x\right )}{e^5+5 x} \, dx\\ &=8000 \int \left (15 \log ^2\left (e^5+5 x\right )-18 x \log ^2\left (e^5+5 x\right )+3 x^2 \log ^2\left (e^5+5 x\right )-8 \log (x) \log ^2\left (e^5+5 x\right )+4 x \log (x) \log ^2\left (e^5+5 x\right )+\log ^2(x) \log ^2\left (e^5+5 x\right )\right ) \, dx+80000 \int \left (\frac {1}{5} (-5+x+\log (x))^2 \log \left (e^5+5 x\right )-\frac {e^5 (-5+x+\log (x))^2 \log \left (e^5+5 x\right )}{5 \left (e^5+5 x\right )}\right ) \, dx\\ &=8000 \int \log ^2(x) \log ^2\left (e^5+5 x\right ) \, dx+16000 \int (-5+x+\log (x))^2 \log \left (e^5+5 x\right ) \, dx+24000 \int x^2 \log ^2\left (e^5+5 x\right ) \, dx+32000 \int x \log (x) \log ^2\left (e^5+5 x\right ) \, dx-64000 \int \log (x) \log ^2\left (e^5+5 x\right ) \, dx+120000 \int \log ^2\left (e^5+5 x\right ) \, dx-144000 \int x \log ^2\left (e^5+5 x\right ) \, dx-\left (16000 e^5\right ) \int \frac {(-5+x+\log (x))^2 \log \left (e^5+5 x\right )}{e^5+5 x} \, dx\\ &=-128000 x \log (x)-12800 e^5 x \log (x)+320 \left (e^5+5 x\right )^2 \log (x)+25600 \left (e^5+5 x\right ) \log (x) \log \left (e^5+5 x\right )+2560 e^5 \left (e^5+5 x\right ) \log (x) \log \left (e^5+5 x\right )-640 \left (e^5+5 x\right )^2 \log (x) \log \left (e^5+5 x\right )+8000 x^3 \log ^2\left (e^5+5 x\right )-12800 \left (e^5+5 x\right ) \log (x) \log ^2\left (e^5+5 x\right )-1280 e^5 \left (e^5+5 x\right ) \log (x) \log ^2\left (e^5+5 x\right )+640 \left (e^5+5 x\right )^2 \log (x) \log ^2\left (e^5+5 x\right )+8000 \int \log ^2(x) \log ^2\left (e^5+5 x\right ) \, dx+16000 \int \left (25 \log \left (e^5+5 x\right )-10 x \log \left (e^5+5 x\right )+x^2 \log \left (e^5+5 x\right )-10 \log (x) \log \left (e^5+5 x\right )+2 x \log (x) \log \left (e^5+5 x\right )+\log ^2(x) \log \left (e^5+5 x\right )\right ) \, dx+24000 \operatorname {Subst}\left (\int \log ^2(x) \, dx,x,e^5+5 x\right )-32000 \int \left (-\frac {2 e^5}{5}+\frac {\left (e^5+5 x\right )^2}{100 x}+\frac {2 e^5 \left (e^5+5 x\right ) \log \left (e^5+5 x\right )}{25 x}-\frac {\left (e^5+5 x\right )^2 \log \left (e^5+5 x\right )}{50 x}-\frac {e^5 \left (e^5+5 x\right ) \log ^2\left (e^5+5 x\right )}{25 x}+\frac {\left (e^5+5 x\right )^2 \log ^2\left (e^5+5 x\right )}{50 x}\right ) \, dx+64000 \int \left (2-\frac {2 \left (e^5+5 x\right ) \log \left (e^5+5 x\right )}{5 x}+\frac {\left (e^5+5 x\right ) \log ^2\left (e^5+5 x\right )}{5 x}\right ) \, dx-80000 \int \frac {x^3 \log \left (e^5+5 x\right )}{e^5+5 x} \, dx-144000 \int \left (-\frac {1}{5} e^5 \log ^2\left (e^5+5 x\right )+\frac {1}{5} \left (e^5+5 x\right ) \log ^2\left (e^5+5 x\right )\right ) \, dx-\left (16000 e^5\right ) \int \left (\frac {25 \log \left (e^5+5 x\right )}{e^5+5 x}-\frac {10 x \log \left (e^5+5 x\right )}{e^5+5 x}+\frac {x^2 \log \left (e^5+5 x\right )}{e^5+5 x}-\frac {10 \log (x) \log \left (e^5+5 x\right )}{e^5+5 x}+\frac {2 x \log (x) \log \left (e^5+5 x\right )}{e^5+5 x}+\frac {\log ^2(x) \log \left (e^5+5 x\right )}{e^5+5 x}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 20, normalized size = 1.00 \begin {gather*} 8000 x (-5+x+\log (x))^2 \log ^2\left (e^5+5 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 40, normalized size = 2.00 \begin {gather*} 8000 \, {\left (x^{3} + x \log \relax (x)^{2} - 10 \, x^{2} + 2 \, {\left (x^{2} - 5 \, x\right )} \log \relax (x) + 25 \, x\right )} \log \left (5 \, x + e^{5}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 87, normalized size = 4.35 \begin {gather*} 8000 \, x^{3} \log \left (5 \, x + e^{5}\right )^{2} + 16000 \, x^{2} \log \left (5 \, x + e^{5}\right )^{2} \log \relax (x) + 8000 \, x \log \left (5 \, x + e^{5}\right )^{2} \log \relax (x)^{2} - 80000 \, x^{2} \log \left (5 \, x + e^{5}\right )^{2} - 80000 \, x \log \left (5 \, x + e^{5}\right )^{2} \log \relax (x) + 200000 \, x \log \left (5 \, x + e^{5}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.26, size = 44, normalized size = 2.20
method | result | size |
risch | \(\left (8000 x^{3}+16000 x^{2} \ln \relax (x )+8000 x \ln \relax (x )^{2}-80000 x^{2}-80000 x \ln \relax (x )+200000 x \right ) \ln \left ({\mathrm e}^{5}+5 x \right )^{2}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.83, size = 312, normalized size = 15.60 \begin {gather*} -\frac {4000}{3} \, x^{2} {\left (e^{5} + 30\right )} + \frac {4000}{3} \, x^{2} e^{5} + 64 \, {\left (125 \, x^{3} + 125 \, x \log \relax (x)^{2} - 1250 \, x^{2} + 250 \, {\left (x^{2} - 5 \, x\right )} \log \relax (x) + 3125 \, x + e^{15} + 50 \, e^{10} + 625 \, e^{5}\right )} \log \left (5 \, x + e^{5}\right )^{2} + 64 \, e^{15} \log \left (5 \, x + e^{5}\right )^{2} + 3200 \, e^{10} \log \left (5 \, x + e^{5}\right )^{2} + 40000 \, e^{5} \log \left (5 \, x + e^{5}\right )^{2} + 40000 \, x^{2} + \frac {320}{3} \, x {\left (11 \, e^{10} + 450 \, e^{5} + 3750\right )} - \frac {3520}{3} \, x e^{10} - 48000 \, x e^{5} - \frac {64}{3} \, {\left (250 \, x^{3} - 75 \, x^{2} {\left (e^{5} + 50\right )} + 30 \, x {\left (e^{10} + 50 \, e^{5} + 625\right )} + 11 \, e^{15} + 450 \, e^{10} + 3750 \, e^{5}\right )} \log \left (5 \, x + e^{5}\right ) + \frac {64}{3} \, {\left (250 \, x^{3} - 75 \, x^{2} e^{5} + 30 \, x e^{10} - 6 \, e^{15} \log \left (5 \, x + e^{5}\right )\right )} \log \left (5 \, x + e^{5}\right ) - 3200 \, {\left (25 \, x^{2} - 10 \, x e^{5} + 2 \, e^{10} \log \left (5 \, x + e^{5}\right )\right )} \log \left (5 \, x + e^{5}\right ) - 80000 \, {\left (e^{5} \log \left (5 \, x + e^{5}\right ) - 5 \, x\right )} \log \left (5 \, x + e^{5}\right ) + \frac {704}{3} \, e^{15} \log \left (5 \, x + e^{5}\right ) + 9600 \, e^{10} \log \left (5 \, x + e^{5}\right ) + 80000 \, e^{5} \log \left (5 \, x + e^{5}\right ) - 400000 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.78, size = 44, normalized size = 2.20 \begin {gather*} {\ln \left (5\,x+{\mathrm {e}}^5\right )}^2\,\left (200000\,x+8000\,x\,{\ln \relax (x)}^2-\ln \relax (x)\,\left (80000\,x-16000\,x^2\right )-80000\,x^2+8000\,x^3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: CoercionFailed} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________