Optimal. Leaf size=14 \[ \frac {3}{1+x}+x \log (3 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {27, 6742, 683, 2295} \begin {gather*} \frac {3}{x+1}+x \log (3 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 683
Rule 2295
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2+2 x+x^2+\left (1+2 x+x^2\right ) \log (3 x)}{(1+x)^2} \, dx\\ &=\int \left (\frac {-2+2 x+x^2}{(1+x)^2}+\log (3 x)\right ) \, dx\\ &=\int \frac {-2+2 x+x^2}{(1+x)^2} \, dx+\int \log (3 x) \, dx\\ &=-x+x \log (3 x)+\int \left (1-\frac {3}{(1+x)^2}\right ) \, dx\\ &=\frac {3}{1+x}+x \log (3 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 14, normalized size = 1.00 \begin {gather*} \frac {3}{1+x}+x \log (3 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 18, normalized size = 1.29 \begin {gather*} \frac {{\left (x^{2} + x\right )} \log \left (3 \, x\right ) + 3}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 14, normalized size = 1.00 \begin {gather*} x \log \left (3 \, x\right ) + \frac {3}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 15, normalized size = 1.07
method | result | size |
risch | \(\frac {3}{x +1}+x \ln \left (3 x \right )\) | \(15\) |
derivativedivides | \(\frac {9}{3 x +3}+x \ln \left (3 x \right )\) | \(17\) |
default | \(\frac {9}{3 x +3}+x \ln \left (3 x \right )\) | \(17\) |
norman | \(\frac {x \ln \left (3 x \right )+x^{2} \ln \left (3 x \right )+3}{x +1}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.71, size = 51, normalized size = 3.64 \begin {gather*} x + \frac {x^{2} {\left (\log \relax (3) - 1\right )} + x^{2} \log \relax (x) + x {\left (\log \relax (3) - 1\right )} + \log \relax (3)}{x + 1} - \frac {\log \left (3 \, x\right )}{x + 1} + \frac {3}{x + 1} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.13, size = 14, normalized size = 1.00 \begin {gather*} x\,\ln \left (3\,x\right )+\frac {3}{x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 10, normalized size = 0.71 \begin {gather*} x \log {\left (3 x \right )} + \frac {3}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________