Optimal. Leaf size=31 \[ e^{\frac {x^2}{\left (3+e^{e^{-x+x^2 \log (x)} x}-x^2\right )^2}} \]
________________________________________________________________________________________
Rubi [F] time = 40.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {x^2}{9+e^{2 e^{-x+x^2 \log (x)} x}-6 x^2+x^4+e^{e^{-x+x^2 \log (x)} x} \left (6-2 x^2\right )}\right ) \left (e^{x-x^2 \log (x)} \left (6 x+2 x^3\right )+e^{e^{-x+x^2 \log (x)} x} \left (2 e^{x-x^2 \log (x)} x-2 x^2+2 x^3-2 x^4-4 x^4 \log (x)\right )\right )}{e^{x+3 e^{-x+x^2 \log (x)} x-x^2 \log (x)}+e^{x+2 e^{-x+x^2 \log (x)} x-x^2 \log (x)} \left (9-3 x^2\right )+e^{x+e^{-x+x^2 \log (x)} x-x^2 \log (x)} \left (27-18 x^2+3 x^4\right )+e^{x-x^2 \log (x)} \left (27-27 x^2+9 x^4-x^6\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-x+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} x \left (e^{x+e^{-x} x^{1+x^2}}+e^{e^{-x} x^{1+x^2}} x^{1+x^2} \left (-1+x-x^2\right )+e^x \left (3+x^2\right )-2 e^{e^{-x} x^{1+x^2}} x^{3+x^2} \log (x)\right )}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^3} \, dx\\ &=2 \int \frac {e^{-x+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} x \left (e^{x+e^{-x} x^{1+x^2}}+e^{e^{-x} x^{1+x^2}} x^{1+x^2} \left (-1+x-x^2\right )+e^x \left (3+x^2\right )-2 e^{e^{-x} x^{1+x^2}} x^{3+x^2} \log (x)\right )}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^3} \, dx\\ &=2 \int \left (-\frac {e^{\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} x \left (3+e^{e^{-x} x^{1+x^2}}+x^2\right )}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3}-\frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{2+x^2} \left (1-x+x^2+2 x^2 \log (x)\right )}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^3}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} x \left (3+e^{e^{-x} x^{1+x^2}}+x^2\right )}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3} \, dx\right )-2 \int \frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{2+x^2} \left (1-x+x^2+2 x^2 \log (x)\right )}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^3} \, dx\\ &=-\left (2 \int \left (\frac {2 e^{\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} x^3}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3}-\frac {e^{\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} x}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^2}\right ) \, dx\right )-2 \int \left (\frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{2+x^2}}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^3}+\frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{3+x^2}}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3}-\frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{4+x^2}}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3}-\frac {2 \exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{4+x^2} \log (x)}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3}\right ) \, dx\\ &=-\left (2 \int \frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{2+x^2}}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^3} \, dx\right )-2 \int \frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{3+x^2}}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3} \, dx+2 \int \frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{4+x^2}}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3} \, dx+2 \int \frac {e^{\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} x}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^2} \, dx-4 \int \frac {e^{\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} x^3}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3} \, dx+4 \int \frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{4+x^2} \log (x)}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3} \, dx\\ &=-\left (2 \int \frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{2+x^2}}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^3} \, dx\right )-2 \int \frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{3+x^2}}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3} \, dx+2 \int \frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{4+x^2}}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3} \, dx+2 \int \frac {e^{\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} x}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^2} \, dx-4 \int \frac {e^{\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} x^3}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3} \, dx-4 \int \frac {\int \frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{4+x^2}}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3} \, dx}{x} \, dx+(4 \log (x)) \int \frac {\exp \left (-x+e^{-x} x^{1+x^2}+\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}\right ) x^{4+x^2}}{\left (-3-e^{e^{-x} x^{1+x^2}}+x^2\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 30, normalized size = 0.97 \begin {gather*} e^{\frac {x^2}{\left (3+e^{e^{-x} x^{1+x^2}}-x^2\right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 53, normalized size = 1.71 \begin {gather*} e^{\left (\frac {x^{2}}{x^{4} - 6 \, x^{2} - 2 \, {\left (x^{2} - 3\right )} e^{\left (x e^{\left (x^{2} \log \relax (x) - x\right )}\right )} + e^{\left (2 \, x e^{\left (x^{2} \log \relax (x) - x\right )}\right )} + 9}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 74, normalized size = 2.39
method | result | size |
risch | \({\mathrm e}^{\frac {x^{2}}{x^{4}-2 \,{\mathrm e}^{x \,x^{x^{2}} {\mathrm e}^{-x}} x^{2}-6 x^{2}+{\mathrm e}^{2 x \,x^{x^{2}} {\mathrm e}^{-x}}+6 \,{\mathrm e}^{x \,x^{x^{2}} {\mathrm e}^{-x}}+9}}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 2.33, size = 138, normalized size = 4.45 \begin {gather*} e^{\left (\frac {e^{\left (x e^{\left (x^{2} \log \relax (x) - x\right )}\right )}}{x^{4} - 6 \, x^{2} - 2 \, {\left (x^{2} - 3\right )} e^{\left (x e^{\left (x^{2} \log \relax (x) - x\right )}\right )} + e^{\left (2 \, x e^{\left (x^{2} \log \relax (x) - x\right )}\right )} + 9} + \frac {3}{x^{4} - 6 \, x^{2} - 2 \, {\left (x^{2} - 3\right )} e^{\left (x e^{\left (x^{2} \log \relax (x) - x\right )}\right )} + e^{\left (2 \, x e^{\left (x^{2} \log \relax (x) - x\right )}\right )} + 9} + \frac {1}{x^{2} - e^{\left (x e^{\left (x^{2} \log \relax (x) - x\right )}\right )} - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.21, size = 64, normalized size = 2.06 \begin {gather*} {\mathrm {e}}^{\frac {x^2}{6\,{\mathrm {e}}^{x^{x^2+1}\,{\mathrm {e}}^{-x}}+{\mathrm {e}}^{2\,x^{x^2+1}\,{\mathrm {e}}^{-x}}-2\,x^2\,{\mathrm {e}}^{x^{x^2+1}\,{\mathrm {e}}^{-x}}-6\,x^2+x^4+9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________