Optimal. Leaf size=20 \[ e^{-3+e^x+x}-\frac {1}{x^4}+x-\log (\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.69, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.159, Rules used = {6742, 2282, 2194, 2176, 6688, 2302, 29} \begin {gather*} -\frac {1}{x^4}+x+e^{x+e^x-3}-\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 2176
Rule 2194
Rule 2282
Rule 2302
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{-3+e^x+x}+e^{-3+e^x+2 x}+\frac {-x^4+4 \log (x)+x^5 \log (x)}{x^5 \log (x)}\right ) \, dx\\ &=\int e^{-3+e^x+x} \, dx+\int e^{-3+e^x+2 x} \, dx+\int \frac {-x^4+4 \log (x)+x^5 \log (x)}{x^5 \log (x)} \, dx\\ &=\int \left (1+\frac {4}{x^5}-\frac {1}{x \log (x)}\right ) \, dx+\operatorname {Subst}\left (\int e^{-3+x} \, dx,x,e^x\right )+\operatorname {Subst}\left (\int e^{-3+x} x \, dx,x,e^x\right )\\ &=e^{-3+e^x}+e^{-3+e^x+x}-\frac {1}{x^4}+x-\int \frac {1}{x \log (x)} \, dx-\operatorname {Subst}\left (\int e^{-3+x} \, dx,x,e^x\right )\\ &=e^{-3+e^x+x}-\frac {1}{x^4}+x-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=e^{-3+e^x+x}-\frac {1}{x^4}+x-\log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 1.00 \begin {gather*} e^{-3+e^x+x}-\frac {1}{x^4}+x-\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 27, normalized size = 1.35 \begin {gather*} \frac {x^{5} + x^{4} e^{\left (x + e^{x} - 3\right )} - x^{4} \log \left (\log \relax (x)\right ) - 1}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 54, normalized size = 2.70 \begin {gather*} \frac {{\left (x^{5} e^{\left (2 \, x + 3\right )} - x^{4} e^{\left (2 \, x + 3\right )} \log \left (\log \relax (x)\right ) + x^{4} e^{\left (3 \, x + e^{x}\right )} - e^{\left (2 \, x + 3\right )}\right )} e^{\left (-2 \, x - 3\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 1.10
method | result | size |
risch | \(\frac {x^{5}-1}{x^{4}}-\ln \left (\ln \relax (x )\right )+{\mathrm e}^{{\mathrm e}^{x}-3+x}\) | \(22\) |
default | \(x -\frac {1}{x^{4}}+{\mathrm e}^{-3} \left ({\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x}}-{\mathrm e}^{{\mathrm e}^{x}}\right )-\ln \left (\ln \relax (x )\right )+{\mathrm e}^{-3} {\mathrm e}^{{\mathrm e}^{x}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 27, normalized size = 1.35 \begin {gather*} {\left (e^{x} - 1\right )} e^{\left (e^{x} - 3\right )} + x - \frac {1}{x^{4}} + e^{\left (e^{x} - 3\right )} - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.27, size = 18, normalized size = 0.90 \begin {gather*} x+{\mathrm {e}}^{x+{\mathrm {e}}^x-3}-\ln \left (\ln \relax (x)\right )-\frac {1}{x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 19, normalized size = 0.95 \begin {gather*} x + e^{x + e^{x} - 3} - \log {\left (\log {\relax (x )} \right )} - \frac {1}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________