Optimal. Leaf size=19 \[ \frac {16 e^{-2 x} (1+2 x)^4}{2401 x^3} \]
________________________________________________________________________________________
Rubi [B] time = 0.19, antiderivative size = 56, normalized size of antiderivative = 2.95, number of steps used = 16, number of rules used = 6, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {12, 2199, 2194, 2177, 2178, 2176} \begin {gather*} \frac {16 e^{-2 x}}{2401 x^3}+\frac {128 e^{-2 x}}{2401 x^2}+\frac {256 e^{-2 x} x}{2401}+\frac {512 e^{-2 x}}{2401}+\frac {384 e^{-2 x}}{2401 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{-2 x} \left (-48-288 x-640 x^2-768 x^3-768 x^4-512 x^5\right )}{x^4} \, dx}{2401}\\ &=\frac {\int \left (-768 e^{-2 x}-\frac {48 e^{-2 x}}{x^4}-\frac {288 e^{-2 x}}{x^3}-\frac {640 e^{-2 x}}{x^2}-\frac {768 e^{-2 x}}{x}-512 e^{-2 x} x\right ) \, dx}{2401}\\ &=-\frac {48 \int \frac {e^{-2 x}}{x^4} \, dx}{2401}-\frac {288 \int \frac {e^{-2 x}}{x^3} \, dx}{2401}-\frac {512 \int e^{-2 x} x \, dx}{2401}-\frac {640 \int \frac {e^{-2 x}}{x^2} \, dx}{2401}-\frac {768 \int e^{-2 x} \, dx}{2401}-\frac {768 \int \frac {e^{-2 x}}{x} \, dx}{2401}\\ &=\frac {384 e^{-2 x}}{2401}+\frac {16 e^{-2 x}}{2401 x^3}+\frac {144 e^{-2 x}}{2401 x^2}+\frac {640 e^{-2 x}}{2401 x}+\frac {256 e^{-2 x} x}{2401}-\frac {768 \text {Ei}(-2 x)}{2401}+\frac {32 \int \frac {e^{-2 x}}{x^3} \, dx}{2401}-\frac {256 \int e^{-2 x} \, dx}{2401}+\frac {288 \int \frac {e^{-2 x}}{x^2} \, dx}{2401}+\frac {1280 \int \frac {e^{-2 x}}{x} \, dx}{2401}\\ &=\frac {512 e^{-2 x}}{2401}+\frac {16 e^{-2 x}}{2401 x^3}+\frac {128 e^{-2 x}}{2401 x^2}+\frac {352 e^{-2 x}}{2401 x}+\frac {256 e^{-2 x} x}{2401}+\frac {512 \text {Ei}(-2 x)}{2401}-\frac {32 \int \frac {e^{-2 x}}{x^2} \, dx}{2401}-\frac {576 \int \frac {e^{-2 x}}{x} \, dx}{2401}\\ &=\frac {512 e^{-2 x}}{2401}+\frac {16 e^{-2 x}}{2401 x^3}+\frac {128 e^{-2 x}}{2401 x^2}+\frac {384 e^{-2 x}}{2401 x}+\frac {256 e^{-2 x} x}{2401}-\frac {64 \text {Ei}(-2 x)}{2401}+\frac {64 \int \frac {e^{-2 x}}{x} \, dx}{2401}\\ &=\frac {512 e^{-2 x}}{2401}+\frac {16 e^{-2 x}}{2401 x^3}+\frac {128 e^{-2 x}}{2401 x^2}+\frac {384 e^{-2 x}}{2401 x}+\frac {256 e^{-2 x} x}{2401}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 19, normalized size = 1.00 \begin {gather*} \frac {16 e^{-2 x} (1+2 x)^4}{2401 x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 29, normalized size = 1.53 \begin {gather*} \frac {16 \, {\left (16 \, x^{4} + 32 \, x^{3} + 24 \, x^{2} + 8 \, x + 1\right )} e^{\left (-2 \, x\right )}}{2401 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 44, normalized size = 2.32 \begin {gather*} \frac {16 \, {\left (16 \, x^{4} e^{\left (-2 \, x\right )} + 32 \, x^{3} e^{\left (-2 \, x\right )} + 24 \, x^{2} e^{\left (-2 \, x\right )} + 8 \, x e^{\left (-2 \, x\right )} + e^{\left (-2 \, x\right )}\right )}}{2401 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 29, normalized size = 1.53
method | result | size |
norman | \(\frac {\left (\frac {16}{2401}+\frac {128}{2401} x +\frac {384}{2401} x^{2}+\frac {512}{2401} x^{3}+\frac {256}{2401} x^{4}\right ) {\mathrm e}^{-2 x}}{x^{3}}\) | \(29\) |
gosper | \(\frac {16 \left (16 x^{4}+32 x^{3}+24 x^{2}+8 x +1\right ) {\mathrm e}^{-2 x}}{2401 x^{3}}\) | \(30\) |
risch | \(\frac {16 \left (16 x^{4}+32 x^{3}+24 x^{2}+8 x +1\right ) {\mathrm e}^{-2 x}}{2401 x^{3}}\) | \(30\) |
default | \(\frac {512 \,{\mathrm e}^{-2 x}}{2401}+\frac {256 x \,{\mathrm e}^{-2 x}}{2401}+\frac {16 \,{\mathrm e}^{-2 x}}{2401 x^{3}}+\frac {128 \,{\mathrm e}^{-2 x}}{2401 x^{2}}+\frac {384 \,{\mathrm e}^{-2 x}}{2401 x}\) | \(42\) |
meijerg | \(\frac {48 \left (-6 x +3\right ) {\mathrm e}^{-2 x}}{2401 x^{2}}+\frac {2 \left (16 x^{2}-8 x +8\right ) {\mathrm e}^{-2 x}}{2401 x^{3}}+\frac {96}{2401 x^{2}}+\frac {160}{2401 x}+\frac {640 \,{\mathrm e}^{-2 x}}{2401 x}+\frac {64 \left (4 x +2\right ) {\mathrm e}^{-2 x}}{2401}-\frac {24 \left (36 x^{2}-24 x +6\right )}{2401 x^{2}}-\frac {320 \left (-4 x +2\right )}{2401 x}-\frac {2 \left (-176 x^{3}+144 x^{2}-72 x +24\right )}{7203 x^{3}}+\frac {384 \,{\mathrm e}^{-2 x}}{2401}+\frac {16}{2401 x^{3}}-\frac {64}{147}\) | \(122\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.64, size = 45, normalized size = 2.37 \begin {gather*} \frac {128}{2401} \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )} - \frac {768}{2401} \, {\rm Ei}\left (-2 \, x\right ) + \frac {384}{2401} \, e^{\left (-2 \, x\right )} + \frac {1280}{2401} \, \Gamma \left (-1, 2 \, x\right ) + \frac {1152}{2401} \, \Gamma \left (-2, 2 \, x\right ) + \frac {384}{2401} \, \Gamma \left (-3, 2 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.09, size = 16, normalized size = 0.84 \begin {gather*} \frac {16\,{\mathrm {e}}^{-2\,x}\,{\left (2\,x+1\right )}^4}{2401\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 29, normalized size = 1.53 \begin {gather*} \frac {\left (256 x^{4} + 512 x^{3} + 384 x^{2} + 128 x + 16\right ) e^{- 2 x}}{2401 x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________