Optimal. Leaf size=25 \[ -10+x+\frac {x}{5+x}+\frac {1}{4} \left (-2+x-e^{-x} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 36, normalized size of antiderivative = 1.44, number of steps used = 9, number of rules used = 7, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.137, Rules used = {1594, 27, 12, 6688, 2176, 2194, 683} \begin {gather*} \frac {1}{4} e^{-x} (1-x)-\frac {e^{-x}}{4}+\frac {5 x}{4}-\frac {5}{x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 683
Rule 1594
Rule 2176
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {145 x+50 x^2+5 x^3+e^{-x} x \left (-25+15 x+9 x^2+x^3\right )}{x \left (100+40 x+4 x^2\right )} \, dx\\ &=\int \frac {145 x+50 x^2+5 x^3+e^{-x} x \left (-25+15 x+9 x^2+x^3\right )}{4 x (5+x)^2} \, dx\\ &=\frac {1}{4} \int \frac {145 x+50 x^2+5 x^3+e^{-x} x \left (-25+15 x+9 x^2+x^3\right )}{x (5+x)^2} \, dx\\ &=\frac {1}{4} \int \left (e^{-x} (-1+x)+\frac {5 \left (29+10 x+x^2\right )}{(5+x)^2}\right ) \, dx\\ &=\frac {1}{4} \int e^{-x} (-1+x) \, dx+\frac {5}{4} \int \frac {29+10 x+x^2}{(5+x)^2} \, dx\\ &=\frac {1}{4} e^{-x} (1-x)+\frac {1}{4} \int e^{-x} \, dx+\frac {5}{4} \int \left (1+\frac {4}{(5+x)^2}\right ) \, dx\\ &=-\frac {e^{-x}}{4}+\frac {1}{4} e^{-x} (1-x)+\frac {5 x}{4}-\frac {5}{5+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 23, normalized size = 0.92 \begin {gather*} \frac {1}{4} \left (5 x-e^{-x} x-\frac {20}{5+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 29, normalized size = 1.16 \begin {gather*} \frac {5 \, x^{2} - {\left (x + 5\right )} e^{\left (-x + \log \relax (x)\right )} + 25 \, x - 20}{4 \, {\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 32, normalized size = 1.28 \begin {gather*} -\frac {x^{2} e^{\left (-x\right )} - 5 \, x^{2} + 5 \, x e^{\left (-x\right )} - 25 \, x + 20}{4 \, {\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.76
method | result | size |
default | \(-\frac {x \,{\mathrm e}^{-x}}{4}+\frac {5 x}{4}-\frac {5}{5+x}\) | \(19\) |
risch | \(-\frac {x \,{\mathrm e}^{-x}}{4}+\frac {5 x}{4}-\frac {5}{5+x}\) | \(19\) |
norman | \(\frac {\frac {5 x^{2}}{4}-\frac {145}{4}-\frac {{\mathrm e}^{\ln \relax (x )-x} x}{4}-\frac {5 \,{\mathrm e}^{\ln \relax (x )-x}}{4}}{5+x}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{4} \, x e^{\left (-x\right )} + \frac {5}{4} \, x + \frac {25 \, e^{5} E_{2}\left (x + 5\right )}{4 \, {\left (x + 5\right )}} - \frac {5}{x + 5} + \frac {25}{4} \, \int \frac {e^{\left (-x\right )}}{x^{2} + 10 \, x + 25}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 29, normalized size = 1.16 \begin {gather*} \frac {5\,x}{4}-\frac {x\,{\mathrm {e}}^{-x}}{4}-\frac {20\,x^2}{4\,x^3+20\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.60 \begin {gather*} \frac {5 x}{4} - \frac {x e^{- x}}{4} - \frac {5}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________