Optimal. Leaf size=27 \[ \frac {5 e^x \left (5-\frac {-1+x}{e^2-x}\right ) x}{3+x} \]
________________________________________________________________________________________
Rubi [B] time = 1.19, antiderivative size = 60, normalized size of antiderivative = 2.22, number of steps used = 12, number of rules used = 7, integrand size = 99, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {6741, 6688, 12, 6742, 2194, 2177, 2178} \begin {gather*} 30 e^x-\frac {15 \left (19+5 e^2\right ) e^x}{\left (3+e^2\right ) (x+3)}+\frac {5 \left (1-e^2\right ) e^{x+2}}{\left (3+e^2\right ) \left (e^2-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2177
Rule 2178
Rule 2194
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (15 e^2 \left (1+5 e^2\right )-15 e^2 \left (11-5 e^2\right ) x+5 \left (16-33 e^2+5 e^4\right ) x^2+5 \left (17-11 e^2\right ) x^3+30 x^4\right )}{9 e^4-6 e^2 \left (3-e^2\right ) x+\left (9-12 e^2+e^4\right ) x^2+2 \left (3-e^2\right ) x^3+x^4} \, dx\\ &=\int \frac {5 e^x \left (3 e^2 \left (1+5 e^2\right )-3 e^2 \left (11-5 e^2\right ) x+\left (16-33 e^2+5 e^4\right ) x^2+\left (17-11 e^2\right ) x^3+6 x^4\right )}{\left (e^2-x\right )^2 (3+x)^2} \, dx\\ &=5 \int \frac {e^x \left (3 e^2 \left (1+5 e^2\right )-3 e^2 \left (11-5 e^2\right ) x+\left (16-33 e^2+5 e^4\right ) x^2+\left (17-11 e^2\right ) x^3+6 x^4\right )}{\left (e^2-x\right )^2 (3+x)^2} \, dx\\ &=5 \int \left (6 e^x+\frac {e^x \left (e^2-e^4\right )}{\left (3+e^2\right ) \left (e^2-x\right )^2}+\frac {e^x \left (e^2-e^4\right )}{\left (3+e^2\right ) \left (e^2-x\right )}+\frac {3 e^x \left (19+5 e^2\right )}{\left (3+e^2\right ) (3+x)^2}-\frac {3 e^x \left (19+5 e^2\right )}{\left (3+e^2\right ) (3+x)}\right ) \, dx\\ &=30 \int e^x \, dx+\frac {\left (5 e^2 \left (1-e^2\right )\right ) \int \frac {e^x}{\left (e^2-x\right )^2} \, dx}{3+e^2}+\frac {\left (5 e^2 \left (1-e^2\right )\right ) \int \frac {e^x}{e^2-x} \, dx}{3+e^2}+\frac {\left (15 \left (19+5 e^2\right )\right ) \int \frac {e^x}{(3+x)^2} \, dx}{3+e^2}-\frac {\left (15 \left (19+5 e^2\right )\right ) \int \frac {e^x}{3+x} \, dx}{3+e^2}\\ &=30 e^x+\frac {5 e^{2+x} \left (1-e^2\right )}{\left (3+e^2\right ) \left (e^2-x\right )}-\frac {15 e^x \left (19+5 e^2\right )}{\left (3+e^2\right ) (3+x)}-\frac {15 \left (19+5 e^2\right ) \text {Ei}(3+x)}{e^3 \left (3+e^2\right )}-\frac {5 e^{2+e^2} \left (1-e^2\right ) \text {Ei}\left (-e^2+x\right )}{3+e^2}-\frac {\left (5 e^2 \left (1-e^2\right )\right ) \int \frac {e^x}{e^2-x} \, dx}{3+e^2}+\frac {\left (15 \left (19+5 e^2\right )\right ) \int \frac {e^x}{3+x} \, dx}{3+e^2}\\ &=30 e^x+\frac {5 e^{2+x} \left (1-e^2\right )}{\left (3+e^2\right ) \left (e^2-x\right )}-\frac {15 e^x \left (19+5 e^2\right )}{\left (3+e^2\right ) (3+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 30, normalized size = 1.11 \begin {gather*} \frac {5 e^x \left (1+5 e^2-6 x\right ) x}{\left (e^2-x\right ) (3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 34, normalized size = 1.26 \begin {gather*} \frac {5 \, {\left (6 \, x^{2} - 5 \, x e^{2} - x\right )} e^{x}}{x^{2} - {\left (x + 3\right )} e^{2} + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 40, normalized size = 1.48 \begin {gather*} \frac {5 \, {\left (6 \, x^{2} e^{x} - 5 \, x e^{\left (x + 2\right )} - x e^{x}\right )}}{x^{2} - x e^{2} + 3 \, x - 3 \, e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 33, normalized size = 1.22
method | result | size |
norman | \(\frac {\left (5+25 \,{\mathrm e}^{2}\right ) x \,{\mathrm e}^{x}-30 \,{\mathrm e}^{x} x^{2}}{\left (3+x \right ) \left ({\mathrm e}^{2}-x \right )}\) | \(33\) |
gosper | \(\frac {5 x \left (-6 x +5 \,{\mathrm e}^{2}+1\right ) {\mathrm e}^{x}}{{\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x}\) | \(34\) |
default | \(\frac {80 \,{\mathrm e}^{x} \left (x \,{\mathrm e}^{4}+3 \,{\mathrm e}^{4}-9 \,{\mathrm e}^{2}+9 x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x \right )}-\frac {80 \,{\mathrm e}^{2} \left (3 \,{\mathrm e}^{2}+{\mathrm e}^{4}+6\right ) {\mathrm e}^{{\mathrm e}^{2}} \expIntegralEi \left (1, {\mathrm e}^{2}-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}+\frac {240 \left (-{\mathrm e}^{2}-9\right ) {\mathrm e}^{-3} \expIntegralEi \left (1, -3-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}+\frac {85 \,{\mathrm e}^{x} \left (x \,{\mathrm e}^{6}+3 \,{\mathrm e}^{6}+27 \,{\mathrm e}^{2}-27 x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x \right )}-\frac {85 \,{\mathrm e}^{2} \left ({\mathrm e}^{6}+9 \,{\mathrm e}^{2}+4 \,{\mathrm e}^{4}\right ) {\mathrm e}^{{\mathrm e}^{2}} \expIntegralEi \left (1, {\mathrm e}^{2}-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}-\frac {255 \left (-{\mathrm e}^{2} {\mathrm e}^{4}+{\mathrm e}^{6}-18\right ) {\mathrm e}^{-3} \expIntegralEi \left (1, -3-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}+30 \,{\mathrm e}^{x}+\frac {30 \,{\mathrm e}^{x} \left (x \,{\mathrm e}^{8}+3 \,{\mathrm e}^{8}-81 \,{\mathrm e}^{2}+81 x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x \right )}-\frac {30 \,{\mathrm e}^{2} \left (5 \,{\mathrm e}^{6}+12 \,{\mathrm e}^{4}+{\mathrm e}^{8}\right ) {\mathrm e}^{{\mathrm e}^{2}} \expIntegralEi \left (1, {\mathrm e}^{2}-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}+\frac {90 \left ({\mathrm e}^{2} {\mathrm e}^{6}+2 \,{\mathrm e}^{2} {\mathrm e}^{4}-2 \,{\mathrm e}^{6}+9 \,{\mathrm e}^{2}-{\mathrm e}^{8}-27\right ) {\mathrm e}^{-3} \expIntegralEi \left (1, -3-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}+15 \,{\mathrm e}^{2} \left (-\frac {{\mathrm e}^{x} \left ({\mathrm e}^{2}-2 x -3\right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x \right )}-\frac {\left ({\mathrm e}^{2}+1\right ) {\mathrm e}^{{\mathrm e}^{2}} \expIntegralEi \left (1, {\mathrm e}^{2}-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}-\frac {\left ({\mathrm e}^{2}+5\right ) {\mathrm e}^{-3} \expIntegralEi \left (1, -3-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}\right )+75 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{x} \left ({\mathrm e}^{2}-2 x -3\right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x \right )}-\frac {\left ({\mathrm e}^{2}+1\right ) {\mathrm e}^{{\mathrm e}^{2}} \expIntegralEi \left (1, {\mathrm e}^{2}-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}-\frac {\left ({\mathrm e}^{2}+5\right ) {\mathrm e}^{-3} \expIntegralEi \left (1, -3-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}\right )+75 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{x} \left ({\mathrm e}^{2} x +6 \,{\mathrm e}^{2}-3 x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x \right )}-\frac {\left ({\mathrm e}^{4}+2 \,{\mathrm e}^{2}+3\right ) {\mathrm e}^{{\mathrm e}^{2}} \expIntegralEi \left (1, {\mathrm e}^{2}-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}+\frac {2 \left ({\mathrm e}^{2}+6\right ) {\mathrm e}^{-3} \expIntegralEi \left (1, -3-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}\right )-165 \,{\mathrm e}^{2} \left (\frac {{\mathrm e}^{x} \left (x \,{\mathrm e}^{4}+3 \,{\mathrm e}^{4}-9 \,{\mathrm e}^{2}+9 x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x \right )}-\frac {{\mathrm e}^{2} \left (3 \,{\mathrm e}^{2}+{\mathrm e}^{4}+6\right ) {\mathrm e}^{{\mathrm e}^{2}} \expIntegralEi \left (1, {\mathrm e}^{2}-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}+\frac {3 \left (-{\mathrm e}^{2}-9\right ) {\mathrm e}^{-3} \expIntegralEi \left (1, -3-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}\right )+25 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{x} \left (x \,{\mathrm e}^{4}+3 \,{\mathrm e}^{4}-9 \,{\mathrm e}^{2}+9 x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x \right )}-\frac {{\mathrm e}^{2} \left (3 \,{\mathrm e}^{2}+{\mathrm e}^{4}+6\right ) {\mathrm e}^{{\mathrm e}^{2}} \expIntegralEi \left (1, {\mathrm e}^{2}-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}+\frac {3 \left (-{\mathrm e}^{2}-9\right ) {\mathrm e}^{-3} \expIntegralEi \left (1, -3-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}\right )-55 \,{\mathrm e}^{2} \left (\frac {{\mathrm e}^{x} \left (x \,{\mathrm e}^{6}+3 \,{\mathrm e}^{6}+27 \,{\mathrm e}^{2}-27 x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x \right )}-\frac {{\mathrm e}^{2} \left ({\mathrm e}^{6}+9 \,{\mathrm e}^{2}+4 \,{\mathrm e}^{4}\right ) {\mathrm e}^{{\mathrm e}^{2}} \expIntegralEi \left (1, {\mathrm e}^{2}-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}-\frac {3 \left (-{\mathrm e}^{2} {\mathrm e}^{4}+{\mathrm e}^{6}-18\right ) {\mathrm e}^{-3} \expIntegralEi \left (1, -3-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}\right )-165 \,{\mathrm e}^{2} \left (\frac {{\mathrm e}^{x} \left ({\mathrm e}^{2} x +6 \,{\mathrm e}^{2}-3 x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2} x -x^{2}+3 \,{\mathrm e}^{2}-3 x \right )}-\frac {\left ({\mathrm e}^{4}+2 \,{\mathrm e}^{2}+3\right ) {\mathrm e}^{{\mathrm e}^{2}} \expIntegralEi \left (1, {\mathrm e}^{2}-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}+\frac {2 \left ({\mathrm e}^{2}+6\right ) {\mathrm e}^{-3} \expIntegralEi \left (1, -3-x \right )}{\left (6 \,{\mathrm e}^{2}+9+{\mathrm e}^{4}\right ) \left ({\mathrm e}^{2}+3\right )}\right )\) | \(1336\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 36, normalized size = 1.33 \begin {gather*} \frac {5 \, {\left (6 \, x^{2} - x {\left (5 \, e^{2} + 1\right )}\right )} e^{x}}{x^{2} - x {\left (e^{2} - 3\right )} - 3 \, e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.63, size = 37, normalized size = 1.37 \begin {gather*} -\frac {{\mathrm {e}}^x\,\left (30\,x^2-x\,\left (25\,{\mathrm {e}}^2+5\right )\right )}{-x^2+\left ({\mathrm {e}}^2-3\right )\,x+3\,{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 34, normalized size = 1.26 \begin {gather*} \frac {\left (30 x^{2} - 25 x e^{2} - 5 x\right ) e^{x}}{x^{2} - x e^{2} + 3 x - 3 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________