Optimal. Leaf size=24 \[ -4-3 e^{e^x}+x-\log (x)+(2+2 x) (x+\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 23, normalized size of antiderivative = 0.96, number of steps used = 9, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {14, 2282, 2194, 2295} \begin {gather*} 2 x^2+3 x-3 e^{e^x}+2 x \log (x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rule 2282
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3 e^{e^x+x}+\frac {1+5 x+4 x^2+2 x \log (x)}{x}\right ) \, dx\\ &=-\left (3 \int e^{e^x+x} \, dx\right )+\int \frac {1+5 x+4 x^2+2 x \log (x)}{x} \, dx\\ &=-\left (3 \operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\right )+\int \left (\frac {1+5 x+4 x^2}{x}+2 \log (x)\right ) \, dx\\ &=-3 e^{e^x}+2 \int \log (x) \, dx+\int \frac {1+5 x+4 x^2}{x} \, dx\\ &=-3 e^{e^x}-2 x+2 x \log (x)+\int \left (5+\frac {1}{x}+4 x\right ) \, dx\\ &=-3 e^{e^x}+3 x+2 x^2+\log (x)+2 x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.96 \begin {gather*} -3 e^{e^x}+3 x+2 x^2+\log (x)+2 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 35, normalized size = 1.46 \begin {gather*} {\left ({\left (2 \, x + 1\right )} e^{x} \log \relax (x) + {\left (2 \, x^{2} + 3 \, x\right )} e^{x} - 3 \, e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 37, normalized size = 1.54 \begin {gather*} {\left (2 \, x^{2} e^{x} + 2 \, x e^{x} \log \relax (x) + 3 \, x e^{x} + e^{x} \log \relax (x) - 3 \, e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 22, normalized size = 0.92
method | result | size |
default | \(2 x^{2}+3 x +\ln \relax (x )-3 \,{\mathrm e}^{{\mathrm e}^{x}}+2 x \ln \relax (x )\) | \(22\) |
risch | \(2 x^{2}+3 x +\ln \relax (x )-3 \,{\mathrm e}^{{\mathrm e}^{x}}+2 x \ln \relax (x )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 21, normalized size = 0.88 \begin {gather*} 2 \, x^{2} + 2 \, x \log \relax (x) + 3 \, x - 3 \, e^{\left (e^{x}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.27, size = 21, normalized size = 0.88 \begin {gather*} 3\,x-3\,{\mathrm {e}}^{{\mathrm {e}}^x}+\ln \relax (x)+2\,x\,\ln \relax (x)+2\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 24, normalized size = 1.00 \begin {gather*} 2 x^{2} + 2 x \log {\relax (x )} + 3 x - 3 e^{e^{x}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________