Optimal. Leaf size=31 \[ \frac {e^e}{x-\frac {\left (3-e^{x^2}\right )^2}{x^3 (4+2 x)^2}} \]
________________________________________________________________________________________
Rubi [F] time = 5.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^e \left (-432 x^2-576 x^3-180 x^4-256 x^6-512 x^7-384 x^8-128 x^9-16 x^{10}+e^{x^2} \left (288 x^2+384 x^3-72 x^4-192 x^5-48 x^6\right )+e^{2 x^2} \left (-48 x^2-64 x^3+44 x^4+64 x^5+16 x^6\right )\right )}{81-12 e^{3 x^2}+e^{4 x^2}-288 x^4-288 x^5-72 x^6+256 x^8+512 x^9+384 x^{10}+128 x^{11}+16 x^{12}+e^{2 x^2} \left (54-32 x^4-32 x^5-8 x^6\right )+e^{x^2} \left (-108+192 x^4+192 x^5+48 x^6\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^e \int \frac {-432 x^2-576 x^3-180 x^4-256 x^6-512 x^7-384 x^8-128 x^9-16 x^{10}+e^{x^2} \left (288 x^2+384 x^3-72 x^4-192 x^5-48 x^6\right )+e^{2 x^2} \left (-48 x^2-64 x^3+44 x^4+64 x^5+16 x^6\right )}{81-12 e^{3 x^2}+e^{4 x^2}-288 x^4-288 x^5-72 x^6+256 x^8+512 x^9+384 x^{10}+128 x^{11}+16 x^{12}+e^{2 x^2} \left (54-32 x^4-32 x^5-8 x^6\right )+e^{x^2} \left (-108+192 x^4+192 x^5+48 x^6\right )} \, dx\\ &=e^e \int \frac {4 x^2 (2+x) \left (-54-45 x-32 x^4-48 x^5-24 x^6-4 x^7-e^{2 x^2} \left (6+5 x-8 x^2-4 x^3\right )-6 e^{x^2} \left (-6-5 x+4 x^2+2 x^3\right )\right )}{\left (9-6 e^{x^2}+e^{2 x^2}-16 x^4-16 x^5-4 x^6\right )^2} \, dx\\ &=\left (4 e^e\right ) \int \frac {x^2 (2+x) \left (-54-45 x-32 x^4-48 x^5-24 x^6-4 x^7-e^{2 x^2} \left (6+5 x-8 x^2-4 x^3\right )-6 e^{x^2} \left (-6-5 x+4 x^2+2 x^3\right )\right )}{\left (9-6 e^{x^2}+e^{2 x^2}-16 x^4-16 x^5-4 x^6\right )^2} \, dx\\ &=\left (4 e^e\right ) \int \left (\frac {-1-x+2 x^2+x^3}{2 \left (-3+e^{x^2}-4 x^2-2 x^3\right )}-\frac {-1-x+2 x^2+x^3}{2 \left (-3+e^{x^2}+4 x^2+2 x^3\right )}+\frac {x^2 \left (-14-13 x+5 x^2+8 x^3+2 x^4\right )}{2 \left (-3+e^{x^2}+4 x^2+2 x^3\right )^2}+\frac {x^2 \left (-2-7 x+5 x^2+8 x^3+2 x^4\right )}{2 \left (3-e^{x^2}+4 x^2+2 x^3\right )^2}\right ) \, dx\\ &=\left (2 e^e\right ) \int \frac {-1-x+2 x^2+x^3}{-3+e^{x^2}-4 x^2-2 x^3} \, dx-\left (2 e^e\right ) \int \frac {-1-x+2 x^2+x^3}{-3+e^{x^2}+4 x^2+2 x^3} \, dx+\left (2 e^e\right ) \int \frac {x^2 \left (-14-13 x+5 x^2+8 x^3+2 x^4\right )}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2} \, dx+\left (2 e^e\right ) \int \frac {x^2 \left (-2-7 x+5 x^2+8 x^3+2 x^4\right )}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2} \, dx\\ &=\left (2 e^e\right ) \int \left (-\frac {2 x^2}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2}-\frac {7 x^3}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2}+\frac {5 x^4}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2}+\frac {8 x^5}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2}+\frac {2 x^6}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2}\right ) \, dx+\left (2 e^e\right ) \int \left (-\frac {1}{-3+e^{x^2}-4 x^2-2 x^3}+\frac {x}{3-e^{x^2}+4 x^2+2 x^3}-\frac {2 x^2}{3-e^{x^2}+4 x^2+2 x^3}-\frac {x^3}{3-e^{x^2}+4 x^2+2 x^3}\right ) \, dx+\left (2 e^e\right ) \int \left (-\frac {14 x^2}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2}-\frac {13 x^3}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2}+\frac {5 x^4}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2}+\frac {8 x^5}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2}+\frac {2 x^6}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2}\right ) \, dx-\left (2 e^e\right ) \int \left (-\frac {1}{-3+e^{x^2}+4 x^2+2 x^3}-\frac {x}{-3+e^{x^2}+4 x^2+2 x^3}+\frac {2 x^2}{-3+e^{x^2}+4 x^2+2 x^3}+\frac {x^3}{-3+e^{x^2}+4 x^2+2 x^3}\right ) \, dx\\ &=-\left (\left (2 e^e\right ) \int \frac {1}{-3+e^{x^2}-4 x^2-2 x^3} \, dx\right )+\left (2 e^e\right ) \int \frac {x}{3-e^{x^2}+4 x^2+2 x^3} \, dx-\left (2 e^e\right ) \int \frac {x^3}{3-e^{x^2}+4 x^2+2 x^3} \, dx+\left (2 e^e\right ) \int \frac {1}{-3+e^{x^2}+4 x^2+2 x^3} \, dx+\left (2 e^e\right ) \int \frac {x}{-3+e^{x^2}+4 x^2+2 x^3} \, dx-\left (2 e^e\right ) \int \frac {x^3}{-3+e^{x^2}+4 x^2+2 x^3} \, dx-\left (4 e^e\right ) \int \frac {x^2}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2} \, dx+\left (4 e^e\right ) \int \frac {x^6}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2} \, dx-\left (4 e^e\right ) \int \frac {x^2}{3-e^{x^2}+4 x^2+2 x^3} \, dx+\left (4 e^e\right ) \int \frac {x^6}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2} \, dx-\left (4 e^e\right ) \int \frac {x^2}{-3+e^{x^2}+4 x^2+2 x^3} \, dx+\left (10 e^e\right ) \int \frac {x^4}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2} \, dx+\left (10 e^e\right ) \int \frac {x^4}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2} \, dx-\left (14 e^e\right ) \int \frac {x^3}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2} \, dx+\left (16 e^e\right ) \int \frac {x^5}{\left (3-e^{x^2}+4 x^2+2 x^3\right )^2} \, dx+\left (16 e^e\right ) \int \frac {x^5}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2} \, dx-\left (26 e^e\right ) \int \frac {x^3}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2} \, dx-\left (28 e^e\right ) \int \frac {x^2}{\left (-3+e^{x^2}+4 x^2+2 x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 48, normalized size = 1.55 \begin {gather*} \frac {4 e^e x^3 (2+x)^2}{-9+6 e^{x^2}-e^{2 x^2}+16 x^4+16 x^5+4 x^6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 52, normalized size = 1.68 \begin {gather*} \frac {4 \, {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3}\right )} e^{e}}{4 \, x^{6} + 16 \, x^{5} + 16 \, x^{4} - e^{\left (2 \, x^{2}\right )} + 6 \, e^{\left (x^{2}\right )} - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.03, size = 52, normalized size = 1.68 \begin {gather*} \frac {4 \, {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3}\right )} e^{e}}{4 \, x^{6} + 16 \, x^{5} + 16 \, x^{4} - e^{\left (2 \, x^{2}\right )} + 6 \, e^{\left (x^{2}\right )} - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 50, normalized size = 1.61
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{{\mathrm e}} \left (x^{2}+4 x +4\right ) x^{3}}{4 x^{6}+16 x^{5}+16 x^{4}-{\mathrm e}^{2 x^{2}}+6 \,{\mathrm e}^{x^{2}}-9}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 52, normalized size = 1.68 \begin {gather*} \frac {4 \, {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3}\right )} e^{e}}{4 \, x^{6} + 16 \, x^{5} + 16 \, x^{4} - e^{\left (2 \, x^{2}\right )} + 6 \, e^{\left (x^{2}\right )} - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.68, size = 172, normalized size = 5.55 \begin {gather*} \frac {4\,\left (4\,{\mathrm {e}}^{\mathrm {e}}\,x^{17}+48\,{\mathrm {e}}^{\mathrm {e}}\,x^{16}+228\,{\mathrm {e}}^{\mathrm {e}}\,x^{15}+504\,{\mathrm {e}}^{\mathrm {e}}\,x^{14}+329\,{\mathrm {e}}^{\mathrm {e}}\,x^{13}-736\,{\mathrm {e}}^{\mathrm {e}}\,x^{12}-1569\,{\mathrm {e}}^{\mathrm {e}}\,x^{11}-744\,{\mathrm {e}}^{\mathrm {e}}\,x^{10}+568\,{\mathrm {e}}^{\mathrm {e}}\,x^9+608\,{\mathrm {e}}^{\mathrm {e}}\,x^8+112\,{\mathrm {e}}^{\mathrm {e}}\,x^7\right )}{\left (6\,{\mathrm {e}}^{x^2}-{\mathrm {e}}^{2\,x^2}+16\,x^4+16\,x^5+4\,x^6-9\right )\,\left (4\,x^{12}+32\,x^{11}+84\,x^{10}+40\,x^9-167\,x^8-228\,x^7+11\,x^6+124\,x^5+28\,x^4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.27, size = 61, normalized size = 1.97 \begin {gather*} \frac {- 4 x^{5} e^{e} - 16 x^{4} e^{e} - 16 x^{3} e^{e}}{- 4 x^{6} - 16 x^{5} - 16 x^{4} + e^{2 x^{2}} - 6 e^{x^{2}} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________