Optimal. Leaf size=25 \[ 1-\frac {\left (2^{5 (1+x)}-2 x\right ) (4+x) \log (x)}{2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 41, normalized size of antiderivative = 1.64, number of steps used = 9, number of rules used = 5, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {12, 14, 43, 2295, 2288} \begin {gather*} -\frac {2^{5 x+4} \left (x^2 \log (32) \log (x)+20 x \log (2) \log (x)\right )}{x^2 \log (32)}+x \log (x)+4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2288
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {2^{5+5 x} (-4-x)+8 x+2 x^2+\left (2 x^2+2^{5+5 x} \left (4+\left (-20 x-5 x^2\right ) \log (2)\right )\right ) \log (x)}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {2 (4+x+x \log (x))}{x}-\frac {32^{1+x} \left (4+x-4 \log (x)+20 x \log (2) \log (x)+x^2 \log (32) \log (x)\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {32^{1+x} \left (4+x-4 \log (x)+20 x \log (2) \log (x)+x^2 \log (32) \log (x)\right )}{x^2} \, dx\right )+\int \frac {4+x+x \log (x)}{x} \, dx\\ &=-\frac {2^{4+5 x} \left (20 x \log (2) \log (x)+x^2 \log (32) \log (x)\right )}{x^2 \log (32)}+\int \left (\frac {4+x}{x}+\log (x)\right ) \, dx\\ &=-\frac {2^{4+5 x} \left (20 x \log (2) \log (x)+x^2 \log (32) \log (x)\right )}{x^2 \log (32)}+\int \frac {4+x}{x} \, dx+\int \log (x) \, dx\\ &=-x+x \log (x)-\frac {2^{4+5 x} \left (20 x \log (2) \log (x)+x^2 \log (32) \log (x)\right )}{x^2 \log (32)}+\int \left (1+\frac {4}{x}\right ) \, dx\\ &=4 \log (x)+x \log (x)-\frac {2^{4+5 x} \left (20 x \log (2) \log (x)+x^2 \log (32) \log (x)\right )}{x^2 \log (32)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 20, normalized size = 0.80 \begin {gather*} \frac {(4+x) \left (-2^{4+5 x}+x\right ) \log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 27, normalized size = 1.08 \begin {gather*} -\frac {{\left (2^{5 \, x + 5} {\left (x + 4\right )} - 2 \, x^{2} - 8 \, x\right )} \log \relax (x)}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 30, normalized size = 1.20 \begin {gather*} -16 \cdot 2^{5 \, x} \log \relax (x) + x \log \relax (x) - \frac {64 \cdot 2^{5 \, x} \log \relax (x)}{x} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 38, normalized size = 1.52
method | result | size |
risch | \(\frac {\left (2 x^{2}-x 2^{5 x +5}-4 \,2^{5 x +5}\right ) \ln \relax (x )}{2 x}+4 \ln \relax (x )\) | \(38\) |
default | \(\frac {-4 \ln \relax (x ) {\mathrm e}^{\left (5 x +5\right ) \ln \relax (2)}-x \,{\mathrm e}^{\left (5 x +5\right ) \ln \relax (2)} \ln \relax (x )}{2 x}+4 \ln \relax (x )+x \ln \relax (x )\) | \(43\) |
norman | \(\frac {x^{2} \ln \relax (x )+4 x \ln \relax (x )-2 \ln \relax (x ) {\mathrm e}^{\left (5 x +5\right ) \ln \relax (2)}-\frac {x \,{\mathrm e}^{\left (5 x +5\right ) \ln \relax (2)} \ln \relax (x )}{2}}{x}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -320 \, \Gamma \left (-1, -5 \, x \log \relax (2)\right ) \log \relax (2) - \frac {1}{2} \cdot 2^{5 \, x + 5} \log \relax (x) + x \log \relax (x) - \frac {64 \cdot 2^{5 \, x} \log \relax (x)}{x} + 64 \, \int \frac {2^{5 \, x}}{x^{2}}\,{d x} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.28, size = 18, normalized size = 0.72 \begin {gather*} \frac {\ln \relax (x)\,\left (x-16\,2^{5\,x}\right )\,\left (x+4\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 34, normalized size = 1.36 \begin {gather*} x \log {\relax (x )} + 4 \log {\relax (x )} + \frac {\left (- x \log {\relax (x )} - 4 \log {\relax (x )}\right ) e^{\left (5 x + 5\right ) \log {\relax (2 )}}}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________