Optimal. Leaf size=17 \[ (-1+x) \left (x-e^4 (11-\log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 34, normalized size of antiderivative = 2.00, number of steps used = 5, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {14, 2295} \begin {gather*} x^2-\left (1+10 e^4\right ) x-e^4 x+e^4 x \log (x)-e^4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-e^4-\left (1+10 e^4\right ) x+2 x^2}{x}+e^4 \log (x)\right ) \, dx\\ &=e^4 \int \log (x) \, dx+\int \frac {-e^4-\left (1+10 e^4\right ) x+2 x^2}{x} \, dx\\ &=-e^4 x+e^4 x \log (x)+\int \left (-1-10 e^4-\frac {e^4}{x}+2 x\right ) \, dx\\ &=-e^4 x-\left (1+10 e^4\right ) x+x^2-e^4 \log (x)+e^4 x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 27, normalized size = 1.59 \begin {gather*} -x-11 e^4 x+x^2-e^4 \log (x)+e^4 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 20, normalized size = 1.18 \begin {gather*} {\left (x - 1\right )} e^{4} \log \relax (x) + x^{2} - 11 \, x e^{4} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 1.41 \begin {gather*} x e^{4} \log \relax (x) + x^{2} - 11 \, x e^{4} - e^{4} \log \relax (x) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 1.47
method | result | size |
norman | \(x^{2}+\left (-1-11 \,{\mathrm e}^{4}\right ) x -{\mathrm e}^{4} \ln \relax (x )+x \,{\mathrm e}^{4} \ln \relax (x )\) | \(25\) |
risch | \(x \,{\mathrm e}^{4} \ln \relax (x )-11 x \,{\mathrm e}^{4}+x^{2}-x -{\mathrm e}^{4} \ln \relax (x )\) | \(25\) |
default | \({\mathrm e}^{4} \left (x \ln \relax (x )-x \right )-10 x \,{\mathrm e}^{4}+x^{2}-{\mathrm e}^{4} \ln \relax (x )-x\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 29, normalized size = 1.71 \begin {gather*} x^{2} + {\left (x \log \relax (x) - x\right )} e^{4} - 10 \, x e^{4} - e^{4} \log \relax (x) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.11, size = 24, normalized size = 1.41 \begin {gather*} x^2-11\,x\,{\mathrm {e}}^4-{\mathrm {e}}^4\,\ln \relax (x)-x+x\,{\mathrm {e}}^4\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 27, normalized size = 1.59 \begin {gather*} x^{2} + x e^{4} \log {\relax (x )} + x \left (- 11 e^{4} - 1\right ) - e^{4} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________