Optimal. Leaf size=22 \[ \frac {5 \left (x+\frac {x}{\log (4)}\right ) \log ^2\left (x+\log ^2(x)\right )}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(10 x+10 x \log (4)+(20+20 \log (4)) \log (x)) \log \left (x+\log ^2(x)\right )+\left (-5 x-5 x \log (4)+(-5-5 \log (4)) \log ^2(x)\right ) \log ^2\left (x+\log ^2(x)\right )}{x^3 \log (4)+x^2 \log (4) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(10 x+10 x \log (4)+(20+20 \log (4)) \log (x)) \log \left (x+\log ^2(x)\right )+\left (-5 x-5 x \log (4)+(-5-5 \log (4)) \log ^2(x)\right ) \log ^2\left (x+\log ^2(x)\right )}{x^2 \left (x \log (4)+\log (4) \log ^2(x)\right )} \, dx\\ &=\int \frac {5 (1+\log (4)) \log \left (x+\log ^2(x)\right ) \left (2 x+4 \log (x)-x \log \left (x+\log ^2(x)\right )-\log ^2(x) \log \left (x+\log ^2(x)\right )\right )}{x^2 \log (4) \left (x+\log ^2(x)\right )} \, dx\\ &=\frac {(5 (1+\log (4))) \int \frac {\log \left (x+\log ^2(x)\right ) \left (2 x+4 \log (x)-x \log \left (x+\log ^2(x)\right )-\log ^2(x) \log \left (x+\log ^2(x)\right )\right )}{x^2 \left (x+\log ^2(x)\right )} \, dx}{\log (4)}\\ &=\frac {(5 (1+\log (4))) \int \left (\frac {2 (x+2 \log (x)) \log \left (x+\log ^2(x)\right )}{x^2 \left (x+\log ^2(x)\right )}-\frac {\log ^2\left (x+\log ^2(x)\right )}{x^2}\right ) \, dx}{\log (4)}\\ &=-\frac {(5 (1+\log (4))) \int \frac {\log ^2\left (x+\log ^2(x)\right )}{x^2} \, dx}{\log (4)}+\frac {(10 (1+\log (4))) \int \frac {(x+2 \log (x)) \log \left (x+\log ^2(x)\right )}{x^2 \left (x+\log ^2(x)\right )} \, dx}{\log (4)}\\ &=-\frac {(5 (1+\log (4))) \int \frac {\log ^2\left (x+\log ^2(x)\right )}{x^2} \, dx}{\log (4)}+\frac {(10 (1+\log (4))) \int \left (\frac {\log \left (x+\log ^2(x)\right )}{x \left (x+\log ^2(x)\right )}+\frac {2 \log (x) \log \left (x+\log ^2(x)\right )}{x^2 \left (x+\log ^2(x)\right )}\right ) \, dx}{\log (4)}\\ &=-\frac {(5 (1+\log (4))) \int \frac {\log ^2\left (x+\log ^2(x)\right )}{x^2} \, dx}{\log (4)}+\frac {(10 (1+\log (4))) \int \frac {\log \left (x+\log ^2(x)\right )}{x \left (x+\log ^2(x)\right )} \, dx}{\log (4)}+\frac {(20 (1+\log (4))) \int \frac {\log (x) \log \left (x+\log ^2(x)\right )}{x^2 \left (x+\log ^2(x)\right )} \, dx}{\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.21, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {(10 x+10 x \log (4)+(20+20 \log (4)) \log (x)) \log \left (x+\log ^2(x)\right )+\left (-5 x-5 x \log (4)+(-5-5 \log (4)) \log ^2(x)\right ) \log ^2\left (x+\log ^2(x)\right )}{x^3 \log (4)+x^2 \log (4) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 24, normalized size = 1.09 \begin {gather*} \frac {5 \, {\left (2 \, \log \relax (2) + 1\right )} \log \left (\log \relax (x)^{2} + x\right )^{2}}{2 \, x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 24, normalized size = 1.09 \begin {gather*} \frac {5 \, {\left (2 \, \log \relax (2) + 1\right )} \log \left (\log \relax (x)^{2} + x\right )^{2}}{2 \, x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 25, normalized size = 1.14
method | result | size |
risch | \(\frac {5 \left (1+2 \ln \relax (2)\right ) \ln \left (\ln \relax (x )^{2}+x \right )^{2}}{2 x \ln \relax (2)}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 24, normalized size = 1.09 \begin {gather*} \frac {5 \, {\left (2 \, \log \relax (2) + 1\right )} \log \left (\log \relax (x)^{2} + x\right )^{2}}{2 \, x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.49, size = 24, normalized size = 1.09 \begin {gather*} \frac {{\ln \left ({\ln \relax (x)}^2+x\right )}^2\,\left (10\,\ln \relax (2)+5\right )}{2\,x\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 22, normalized size = 1.00 \begin {gather*} \frac {\left (5 + 10 \log {\relax (2 )}\right ) \log {\left (x + \log {\relax (x )}^{2} \right )}^{2}}{2 x \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________