Optimal. Leaf size=14 \[ \frac {x}{\log \left (16 \left (\frac {431}{144}+x+\log (2)\right )\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.41, antiderivative size = 58, normalized size of antiderivative = 4.14, number of steps used = 14, number of rules used = 11, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.196, Rules used = {6741, 6688, 6742, 2411, 12, 2353, 2297, 2298, 2302, 30, 2389} \begin {gather*} \frac {144 x+431+144 \log (2)}{144 \log \left (16 x+\frac {1}{9} (431+144 \log (2))\right )}-\frac {431+144 \log (2)}{144 \log \left (16 x+\frac {1}{9} (431+144 \log (2))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2297
Rule 2298
Rule 2302
Rule 2353
Rule 2389
Rule 2411
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-144 x+(431+144 x+144 \log (2)) \log \left (\frac {1}{9} (431+144 x+144 \log (2))\right )}{(431+144 x+144 \log (2)) \log ^2\left (16 x+\frac {1}{9} (431+144 \log (2))\right )} \, dx\\ &=\int \frac {-\frac {144 x}{431+144 x+144 \log (2)}+\log \left (\frac {431}{9}+16 x+16 \log (2)\right )}{\log ^2\left (\frac {431}{9}+16 x+16 \log (2)\right )} \, dx\\ &=\int \left (-\frac {144 x}{(431+144 x+144 \log (2)) \log ^2\left (\frac {431}{9}+16 x+16 \log (2)\right )}+\frac {1}{\log \left (\frac {431}{9}+16 x+16 \log (2)\right )}\right ) \, dx\\ &=-\left (144 \int \frac {x}{(431+144 x+144 \log (2)) \log ^2\left (\frac {431}{9}+16 x+16 \log (2)\right )} \, dx\right )+\int \frac {1}{\log \left (\frac {431}{9}+16 x+16 \log (2)\right )} \, dx\\ &=\frac {1}{16} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,\frac {431}{9}+16 x+16 \log (2)\right )-9 \operatorname {Subst}\left (\int \frac {\frac {x}{16}+\frac {1}{16} \left (-\frac {431}{9}-16 \log (2)\right )}{9 x \log ^2(x)} \, dx,x,\frac {431}{9}+16 x+16 \log (2)\right )\\ &=\frac {1}{16} \text {li}\left (16 x+\frac {1}{9} (431+144 \log (2))\right )-\operatorname {Subst}\left (\int \frac {\frac {x}{16}+\frac {1}{16} \left (-\frac {431}{9}-16 \log (2)\right )}{x \log ^2(x)} \, dx,x,\frac {431}{9}+16 x+16 \log (2)\right )\\ &=\frac {1}{16} \text {li}\left (16 x+\frac {1}{9} (431+144 \log (2))\right )-\operatorname {Subst}\left (\int \left (\frac {1}{16 \log ^2(x)}+\frac {-431-144 \log (2)}{144 x \log ^2(x)}\right ) \, dx,x,\frac {431}{9}+16 x+16 \log (2)\right )\\ &=\frac {1}{16} \text {li}\left (16 x+\frac {1}{9} (431+144 \log (2))\right )-\frac {1}{16} \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,\frac {431}{9}+16 x+16 \log (2)\right )-\frac {1}{144} (-431-144 \log (2)) \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,\frac {431}{9}+16 x+16 \log (2)\right )\\ &=\frac {431+144 x+144 \log (2)}{144 \log \left (16 x+\frac {1}{9} (431+144 \log (2))\right )}+\frac {1}{16} \text {li}\left (16 x+\frac {1}{9} (431+144 \log (2))\right )-\frac {1}{16} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,\frac {431}{9}+16 x+16 \log (2)\right )-\frac {1}{144} (-431-144 \log (2)) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (\frac {431}{9}+16 x+16 \log (2)\right )\right )\\ &=-\frac {431+144 \log (2)}{144 \log \left (16 x+\frac {1}{9} (431+144 \log (2))\right )}+\frac {431+144 x+144 \log (2)}{144 \log \left (16 x+\frac {1}{9} (431+144 \log (2))\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 16, normalized size = 1.14 \begin {gather*} \frac {x}{\log \left (\frac {431}{9}+16 x+16 \log (2)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.11, size = 14, normalized size = 1.00 \begin {gather*} \frac {x}{\log \left (16 \, x + 16 \, \log \relax (2) + \frac {431}{9}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 22, normalized size = 1.57 \begin {gather*} -\frac {x}{2 \, \log \relax (3) - \log \left (144 \, x + 144 \, \log \relax (2) + 431\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 15, normalized size = 1.07
method | result | size |
norman | \(\frac {x}{\ln \left (16 \ln \relax (2)+16 x +\frac {431}{9}\right )}\) | \(15\) |
risch | \(\frac {x}{\ln \left (16 \ln \relax (2)+16 x +\frac {431}{9}\right )}\) | \(15\) |
derivativedivides | \(\frac {16 \ln \relax (2)+16 x +\frac {431}{9}}{16 \ln \left (16 \ln \relax (2)+16 x +\frac {431}{9}\right )}-\frac {\ln \relax (2)}{\ln \left (16 \ln \relax (2)+16 x +\frac {431}{9}\right )}-\frac {431}{144 \ln \left (16 \ln \relax (2)+16 x +\frac {431}{9}\right )}\) | \(55\) |
default | \(\frac {16 \ln \relax (2)+16 x +\frac {431}{9}}{16 \ln \left (16 \ln \relax (2)+16 x +\frac {431}{9}\right )}-\frac {\ln \relax (2)}{\ln \left (16 \ln \relax (2)+16 x +\frac {431}{9}\right )}-\frac {431}{144 \ln \left (16 \ln \relax (2)+16 x +\frac {431}{9}\right )}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.75, size = 22, normalized size = 1.57 \begin {gather*} -\frac {x}{2 \, \log \relax (3) - \log \left (144 \, x + 144 \, \log \relax (2) + 431\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.41, size = 14, normalized size = 1.00 \begin {gather*} \frac {x}{\ln \left (16\,x+16\,\ln \relax (2)+\frac {431}{9}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 1.00 \begin {gather*} \frac {x}{\log {\left (16 x + 16 \log {\relax (2 )} + \frac {431}{9} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________