Optimal. Leaf size=15 \[ x+\frac {1}{\log \left (\log \left (e^x x+x^3\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (-1-x)-3 x^2+\left (e^x x+x^3\right ) \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )}{\left (e^x x+x^3\right ) \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {(-2+x) x}{\left (e^x+x^2\right ) \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )}+\frac {-1-x+x \log \left (x \left (e^x+x^2\right )\right ) \log ^2\left (\log \left (x \left (e^x+x^2\right )\right )\right )}{x \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )}\right ) \, dx\\ &=\int \frac {(-2+x) x}{\left (e^x+x^2\right ) \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )} \, dx+\int \frac {-1-x+x \log \left (x \left (e^x+x^2\right )\right ) \log ^2\left (\log \left (x \left (e^x+x^2\right )\right )\right )}{x \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )} \, dx\\ &=\int \left (1-\frac {1}{\log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )}-\frac {1}{x \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )}\right ) \, dx+\int \left (\frac {2 x}{\left (-e^x-x^2\right ) \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )}+\frac {x^2}{\left (e^x+x^2\right ) \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )}\right ) \, dx\\ &=x+2 \int \frac {x}{\left (-e^x-x^2\right ) \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )} \, dx-\int \frac {1}{\log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )} \, dx-\int \frac {1}{x \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )} \, dx+\int \frac {x^2}{\left (e^x+x^2\right ) \log \left (e^x x+x^3\right ) \log ^2\left (\log \left (e^x x+x^3\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 15, normalized size = 1.00 \begin {gather*} x+\frac {1}{\log \left (\log \left (x \left (e^x+x^2\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 27, normalized size = 1.80 \begin {gather*} \frac {x \log \left (\log \left (x^{3} + x e^{x}\right )\right ) + 1}{\log \left (\log \left (x^{3} + x e^{x}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.64, size = 27, normalized size = 1.80 \begin {gather*} \frac {x \log \left (\log \left (x^{3} + x e^{x}\right )\right ) + 1}{\log \left (\log \left (x^{3} + x e^{x}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 74, normalized size = 4.93
method | result | size |
risch | \(x +\frac {1}{\ln \left (\ln \relax (x )+\ln \left (x^{2}+{\mathrm e}^{x}\right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (x^{2}+{\mathrm e}^{x}\right )\right ) \left (-\mathrm {csgn}\left (i x \left (x^{2}+{\mathrm e}^{x}\right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (x^{2}+{\mathrm e}^{x}\right )\right )+\mathrm {csgn}\left (i \left (x^{2}+{\mathrm e}^{x}\right )\right )\right )}{2}\right )}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 29, normalized size = 1.93 \begin {gather*} \frac {x \log \left (\log \left (x^{2} + e^{x}\right ) + \log \relax (x)\right ) + 1}{\log \left (\log \left (x^{2} + e^{x}\right ) + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.33, size = 14, normalized size = 0.93 \begin {gather*} x+\frac {1}{\ln \left (\ln \left (x\,{\mathrm {e}}^x+x^3\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.28, size = 14, normalized size = 0.93 \begin {gather*} x + \frac {1}{\log {\left (\log {\left (x^{3} + x e^{x} \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________