3.36.38 \(\int \frac {4 x^5+(-4 x^3-2 x^5) \log (4+4 x^2+x^4)+(-6-3 x^2) \log ^2(4+4 x^2+x^4)}{(-2 x^4-x^6) \log (4+4 x^2+x^4)+(6 x-2 x^2+3 x^3-x^4+(2 x^2+x^4) \log (5)) \log ^2(4+4 x^2+x^4)} \, dx\)
Optimal. Leaf size=35 \[ \log \left (-x-\frac {-3+x-x^2}{x}+\log (5)-\frac {x^2}{\log \left (\left (2+x^2\right )^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.19, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used =
{} \begin {gather*} \int \frac {4 x^5+\left (-4 x^3-2 x^5\right ) \log \left (4+4 x^2+x^4\right )+\left (-6-3 x^2\right ) \log ^2\left (4+4 x^2+x^4\right )}{\left (-2 x^4-x^6\right ) \log \left (4+4 x^2+x^4\right )+\left (6 x-2 x^2+3 x^3-x^4+\left (2 x^2+x^4\right ) \log (5)\right ) \log ^2\left (4+4 x^2+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
Int[(4*x^5 + (-4*x^3 - 2*x^5)*Log[4 + 4*x^2 + x^4] + (-6 - 3*x^2)*Log[4 + 4*x^2 + x^4]^2)/((-2*x^4 - x^6)*Log[
4 + 4*x^2 + x^4] + (6*x - 2*x^2 + 3*x^3 - x^4 + (2*x^2 + x^4)*Log[5])*Log[4 + 4*x^2 + x^4]^2),x]
[Out]
-Log[x] + Log[3 - x*(1 - Log[5])] - Log[Log[(2 + x^2)^2]] + (9*Defer[Int][(-x^3 - (-3 + x - x*Log[5])*Log[(2 +
x^2)^2])^(-1), x])/(1 - Log[5])^2 - 4*(1 - Log[5])*Defer[Int][(-x^3 - (-3 + x - x*Log[5])*Log[(2 + x^2)^2])^(
-1), x] + 6*Defer[Int][1/((I*Sqrt[2] - x)*(x^3 + (-3 + x - x*Log[5])*Log[(2 + x^2)^2])), x] - (2*I)*Sqrt[2]*(1
- Log[5])*Defer[Int][1/((I*Sqrt[2] - x)*(x^3 + (-3 + x - x*Log[5])*Log[(2 + x^2)^2])), x] - (3*Defer[Int][x/(
x^3 + (-3 + x - x*Log[5])*Log[(2 + x^2)^2]), x])/(1 - Log[5]) + 2*Defer[Int][x^2/(x^3 + (-3 + x - x*Log[5])*Lo
g[(2 + x^2)^2]), x] - 6*Defer[Int][1/((I*Sqrt[2] + x)*(x^3 + (-3 + x - x*Log[5])*Log[(2 + x^2)^2])), x] - (2*I
)*Sqrt[2]*(1 - Log[5])*Defer[Int][1/((I*Sqrt[2] + x)*(x^3 + (-3 + x - x*Log[5])*Log[(2 + x^2)^2])), x] + (27*D
efer[Int][1/((3 + x*(-1 + Log[5]))*(x^3 + (-3 + x - x*Log[5])*Log[(2 + x^2)^2])), x])/(1 - Log[5])^2
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x^5+2 x^3 \left (2+x^2\right ) \log \left (\left (2+x^2\right )^2\right )+3 \left (2+x^2\right ) \log ^2\left (\left (2+x^2\right )^2\right )}{x \left (2+x^2\right ) \log \left (\left (2+x^2\right )^2\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx\\ &=\int \left (\frac {3}{x (-3+x (1-\log (5)))}-\frac {4 x}{\left (2+x^2\right ) \log \left (\left (2+x^2\right )^2\right )}+\frac {x^2 (9-2 x (1-\log (5)))}{(3-x (1-\log (5))) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}+\frac {4 x (-3+x (1-\log (5)))}{\left (2+x^2\right ) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}\right ) \, dx\\ &=3 \int \frac {1}{x (-3+x (1-\log (5)))} \, dx-4 \int \frac {x}{\left (2+x^2\right ) \log \left (\left (2+x^2\right )^2\right )} \, dx+4 \int \frac {x (-3+x (1-\log (5)))}{\left (2+x^2\right ) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx+\int \frac {x^2 (9-2 x (1-\log (5)))}{(3-x (1-\log (5))) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx\\ &=-\left (2 \operatorname {Subst}\left (\int \frac {1}{(2+x) \log \left ((2+x)^2\right )} \, dx,x,x^2\right )\right )+4 \int \left (\frac {\left (1-\frac {1}{\log (5)}\right ) \log (5)}{-x^3+3 \log \left (\left (2+x^2\right )^2\right )-x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )}+\frac {-2-3 x+\log (25)}{\left (2+x^2\right ) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}\right ) \, dx+(1-\log (5)) \int \frac {1}{-3+x (1-\log (5))} \, dx-\int \frac {1}{x} \, dx+\int \left (\frac {9}{(1-\log (5))^2 \left (-x^3+3 \log \left (\left (2+x^2\right )^2\right )-x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}+\frac {2 x^2}{x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )}+\frac {27}{(3-x (1-\log (5))) (1-\log (5))^2 \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}+\frac {3 x}{(-1+\log (5)) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}\right ) \, dx\\ &=-\log (x)+\log (3-x (1-\log (5)))+2 \int \frac {x^2}{x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx-2 \operatorname {Subst}\left (\int \frac {1}{x \log \left (x^2\right )} \, dx,x,2+x^2\right )+4 \int \frac {-2-3 x+\log (25)}{\left (2+x^2\right ) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx+\frac {9 \int \frac {1}{-x^3+3 \log \left (\left (2+x^2\right )^2\right )-x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{(1-\log (5))^2}+\frac {27 \int \frac {1}{(3-x (1-\log (5))) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx}{(1-\log (5))^2}-\frac {3 \int \frac {x}{x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{1-\log (5)}+(4 (-1+\log (5))) \int \frac {1}{-x^3+3 \log \left (\left (2+x^2\right )^2\right )-x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx\\ &=-\log (x)+\log (3-x (1-\log (5)))+2 \int \frac {x^2}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx+4 \int \frac {-2-3 x+\log (25)}{\left (2+x^2\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx+\frac {9 \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{(1-\log (5))^2}+\frac {27 \int \frac {1}{(3+x (-1+\log (5))) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx}{(1-\log (5))^2}-\frac {3 \int \frac {x}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{1-\log (5)}+(4 (-1+\log (5))) \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (\left (2+x^2\right )^2\right )\right )\\ &=-\log (x)+\log (3-x (1-\log (5)))-\log \left (\log \left (\left (2+x^2\right )^2\right )\right )+2 \int \frac {x^2}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx+4 \int \left (\frac {3 x}{\left (-2-x^2\right ) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}+\frac {2 (1-\log (5))}{\left (-2-x^2\right ) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}\right ) \, dx+\frac {9 \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{(1-\log (5))^2}+\frac {27 \int \frac {1}{(3+x (-1+\log (5))) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx}{(1-\log (5))^2}-\frac {3 \int \frac {x}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{1-\log (5)}+(4 (-1+\log (5))) \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx\\ &=-\log (x)+\log (3-x (1-\log (5)))-\log \left (\log \left (\left (2+x^2\right )^2\right )\right )+2 \int \frac {x^2}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx+12 \int \frac {x}{\left (-2-x^2\right ) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx+\frac {9 \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{(1-\log (5))^2}+\frac {27 \int \frac {1}{(3+x (-1+\log (5))) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx}{(1-\log (5))^2}-\frac {3 \int \frac {x}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{1-\log (5)}+(8 (1-\log (5))) \int \frac {1}{\left (-2-x^2\right ) \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x (1-\log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx+(4 (-1+\log (5))) \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx\\ &=-\log (x)+\log (3-x (1-\log (5)))-\log \left (\log \left (\left (2+x^2\right )^2\right )\right )+2 \int \frac {x^2}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx+12 \int \frac {x}{\left (-2-x^2\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx+\frac {9 \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{(1-\log (5))^2}+\frac {27 \int \frac {1}{(3+x (-1+\log (5))) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx}{(1-\log (5))^2}-\frac {3 \int \frac {x}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{1-\log (5)}+(8 (1-\log (5))) \int \frac {1}{\left (-2-x^2\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx+(4 (-1+\log (5))) \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx\\ &=-\log (x)+\log (3-x (1-\log (5)))-\log \left (\log \left (\left (2+x^2\right )^2\right )\right )+2 \int \frac {x^2}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx+12 \int \left (\frac {1}{2 \left (i \sqrt {2}-x\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}-\frac {1}{2 \left (i \sqrt {2}+x\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}\right ) \, dx+\frac {9 \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{(1-\log (5))^2}+\frac {27 \int \frac {1}{(3+x (-1+\log (5))) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx}{(1-\log (5))^2}-\frac {3 \int \frac {x}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{1-\log (5)}+(8 (1-\log (5))) \int \left (-\frac {i}{2 \sqrt {2} \left (i \sqrt {2}-x\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}-\frac {i}{2 \sqrt {2} \left (i \sqrt {2}+x\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )}\right ) \, dx+(4 (-1+\log (5))) \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx\\ &=-\log (x)+\log (3-x (1-\log (5)))-\log \left (\log \left (\left (2+x^2\right )^2\right )\right )+2 \int \frac {x^2}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx+6 \int \frac {1}{\left (i \sqrt {2}-x\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx-6 \int \frac {1}{\left (i \sqrt {2}+x\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx+\frac {9 \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{(1-\log (5))^2}+\frac {27 \int \frac {1}{(3+x (-1+\log (5))) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx}{(1-\log (5))^2}-\frac {3 \int \frac {x}{x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx}{1-\log (5)}-\left (2 i \sqrt {2} (1-\log (5))\right ) \int \frac {1}{\left (i \sqrt {2}-x\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx-\left (2 i \sqrt {2} (1-\log (5))\right ) \int \frac {1}{\left (i \sqrt {2}+x\right ) \left (x^3+(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )\right )} \, dx+(4 (-1+\log (5))) \int \frac {1}{-x^3-(-3+x-x \log (5)) \log \left (\left (2+x^2\right )^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.28, size = 54, normalized size = 1.54 \begin {gather*} -\log (x)-\log \left (\log \left (\left (2+x^2\right )^2\right )\right )+\log \left (x^3-3 \log \left (\left (2+x^2\right )^2\right )+x \log \left (\left (2+x^2\right )^2\right )-x \log (5) \log \left (\left (2+x^2\right )^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
Integrate[(4*x^5 + (-4*x^3 - 2*x^5)*Log[4 + 4*x^2 + x^4] + (-6 - 3*x^2)*Log[4 + 4*x^2 + x^4]^2)/((-2*x^4 - x^6
)*Log[4 + 4*x^2 + x^4] + (6*x - 2*x^2 + 3*x^3 - x^4 + (2*x^2 + x^4)*Log[5])*Log[4 + 4*x^2 + x^4]^2),x]
[Out]
-Log[x] - Log[Log[(2 + x^2)^2]] + Log[x^3 - 3*Log[(2 + x^2)^2] + x*Log[(2 + x^2)^2] - x*Log[5]*Log[(2 + x^2)^2
]]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 69, normalized size = 1.97 \begin {gather*} \log \left (x \log \relax (5) - x + 3\right ) - \log \relax (x) + \log \left (-\frac {x^{3} - {\left (x \log \relax (5) - x + 3\right )} \log \left (x^{4} + 4 \, x^{2} + 4\right )}{x \log \relax (5) - x + 3}\right ) - \log \left (\log \left (x^{4} + 4 \, x^{2} + 4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^2-6)*log(x^4+4*x^2+4)^2+(-2*x^5-4*x^3)*log(x^4+4*x^2+4)+4*x^5)/(((x^4+2*x^2)*log(5)-x^4+3*x^3
-2*x^2+6*x)*log(x^4+4*x^2+4)^2+(-x^6-2*x^4)*log(x^4+4*x^2+4)),x, algorithm="fricas")
[Out]
log(x*log(5) - x + 3) - log(x) + log(-(x^3 - (x*log(5) - x + 3)*log(x^4 + 4*x^2 + 4))/(x*log(5) - x + 3)) - lo
g(log(x^4 + 4*x^2 + 4))
________________________________________________________________________________________
giac [A] time = 0.30, size = 68, normalized size = 1.94 \begin {gather*} \log \left (-x^{3} + x \log \relax (5) \log \left (x^{4} + 4 \, x^{2} + 4\right ) - x \log \left (x^{4} + 4 \, x^{2} + 4\right ) + 3 \, \log \left (x^{4} + 4 \, x^{2} + 4\right )\right ) - \log \relax (x) - \log \left (\log \left (x^{4} + 4 \, x^{2} + 4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^2-6)*log(x^4+4*x^2+4)^2+(-2*x^5-4*x^3)*log(x^4+4*x^2+4)+4*x^5)/(((x^4+2*x^2)*log(5)-x^4+3*x^3
-2*x^2+6*x)*log(x^4+4*x^2+4)^2+(-x^6-2*x^4)*log(x^4+4*x^2+4)),x, algorithm="giac")
[Out]
log(-x^3 + x*log(5)*log(x^4 + 4*x^2 + 4) - x*log(x^4 + 4*x^2 + 4) + 3*log(x^4 + 4*x^2 + 4)) - log(x) - log(log
(x^4 + 4*x^2 + 4))
________________________________________________________________________________________
maple [A] time = 0.35, size = 60, normalized size = 1.71
|
|
|
method |
result |
size |
|
|
|
risch |
\(\ln \left (\left (-\ln \relax (5)+1\right ) x -3\right )-\ln \relax (x )+\ln \left (\ln \left (x^{4}+4 x^{2}+4\right )-\frac {x^{3}}{x \ln \relax (5)-x +3}\right )-\ln \left (\ln \left (x^{4}+4 x^{2}+4\right )\right )\) |
\(60\) |
norman |
\(-\ln \relax (x )-\ln \left (\ln \left (x^{4}+4 x^{2}+4\right )\right )+\ln \left (\ln \left (x^{4}+4 x^{2}+4\right ) \ln \relax (5) x -x^{3}-x \ln \left (x^{4}+4 x^{2}+4\right )+3 \ln \left (x^{4}+4 x^{2}+4\right )\right )\) |
\(69\) |
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-3*x^2-6)*ln(x^4+4*x^2+4)^2+(-2*x^5-4*x^3)*ln(x^4+4*x^2+4)+4*x^5)/(((x^4+2*x^2)*ln(5)-x^4+3*x^3-2*x^2+6*
x)*ln(x^4+4*x^2+4)^2+(-x^6-2*x^4)*ln(x^4+4*x^2+4)),x,method=_RETURNVERBOSE)
[Out]
ln((-ln(5)+1)*x-3)-ln(x)+ln(ln(x^4+4*x^2+4)-x^3/(x*ln(5)-x+3))-ln(ln(x^4+4*x^2+4))
________________________________________________________________________________________
maxima [A] time = 0.55, size = 56, normalized size = 1.60 \begin {gather*} \log \left (x {\left (\log \relax (5) - 1\right )} + 3\right ) - \log \relax (x) + \log \left (-\frac {x^{3} - 2 \, {\left (x {\left (\log \relax (5) - 1\right )} + 3\right )} \log \left (x^{2} + 2\right )}{2 \, {\left (x {\left (\log \relax (5) - 1\right )} + 3\right )}}\right ) - \log \left (\log \left (x^{2} + 2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^2-6)*log(x^4+4*x^2+4)^2+(-2*x^5-4*x^3)*log(x^4+4*x^2+4)+4*x^5)/(((x^4+2*x^2)*log(5)-x^4+3*x^3
-2*x^2+6*x)*log(x^4+4*x^2+4)^2+(-x^6-2*x^4)*log(x^4+4*x^2+4)),x, algorithm="maxima")
[Out]
log(x*(log(5) - 1) + 3) - log(x) + log(-1/2*(x^3 - 2*(x*(log(5) - 1) + 3)*log(x^2 + 2))/(x*(log(5) - 1) + 3))
- log(log(x^2 + 2))
________________________________________________________________________________________
mupad [B] time = 6.03, size = 27623, normalized size = 789.23 result too large to
display
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(4*x^2 + x^4 + 4)*(4*x^3 + 2*x^5) + log(4*x^2 + x^4 + 4)^2*(3*x^2 + 6) - 4*x^5)/(log(4*x^2 + x^4 + 4)*
(2*x^4 + x^6) - log(4*x^2 + x^4 + 4)^2*(6*x + log(5)*(2*x^2 + x^4) - 2*x^2 + 3*x^3 - x^4)),x)
[Out]
log(x*(9*log((x^2 + 2)^2) + x^2*log((x^2 + 2)^2) - x^4*log(5) - 3*x^3 + x^4 - 6*x*log((x^2 + 2)^2) + x^2*log((
x^2 + 2)^2)*log(5)^2 + 6*x*log((x^2 + 2)^2)*log(5) - 2*x^2*log((x^2 + 2)^2)*log(5))) - log(x*(72*log(4*x^2 + x
^4 + 4) + 12*x^2*log(4*x^2 + x^4 + 4) - 9*x^3*log(4*x^2 + x^4 + 4) + 2*x^4*log(4*x^2 + x^4 + 4) - 4*x^4*log(5)
- 66*x*log(4*x^2 + x^4 + 4) - 12*x^3 + 4*x^4 + 48*x*log(5)*log(4*x^2 + x^4 + 4) - 20*x^2*log(5)*log(4*x^2 + x
^4 + 4) - 2*x^4*log(5)*log(4*x^2 + x^4 + 4) + 8*x^2*log(5)^2*log(4*x^2 + x^4 + 4)) - x*(9*x^3*log(4*x^2 + x^4
+ 4) - 4*x^2*log(4*x^2 + x^4 + 4) - 2*x^4*log(4*x^2 + x^4 + 4) - 4*x^4*log(5) + 18*x*log(4*x^2 + x^4 + 4) - 12
*x^3 + 4*x^4 + 4*x^2*log(5)*log(4*x^2 + x^4 + 4) + 2*x^4*log(5)*log(4*x^2 + x^4 + 4))) - log(x) + symsum(log(3
3043620105792*log(625) - 191446983005184*log(5) - root(12476089554*z^5*log(5)*log(625) - 4950250980*z^5*log(5)
^2*log(625)^2 + 484358724*z^5*log(5)^4*log(625)^3 - 239636880*z^5*log(5)^2*log(625)^4 - 94885776*z^5*log(5)^5*
log(625)^3 + 88216560*z^5*log(5)^7*log(625)^2 - 54064008*z^5*log(5)^6*log(625)^2 - 25406208*z^5*log(5)^8*log(6
25)^2 + 19994256*z^5*log(5)^6*log(625)^3 + 19789920*z^5*log(5)^3*log(625)^4 + 8000000*z^5*log(5)^9*log(625)^2
- 4233600*z^5*log(5)^7*log(625)^3 - 3421440*z^5*log(5)^4*log(625)^4 + 559872*z^5*log(5)^5*log(625)^4 - 450048*
z^5*log(5)^10*log(625)^2 + 179712*z^5*log(5)^8*log(625)^3 - 33024*z^5*log(5)^11*log(625)^2 + 2048*z^5*log(5)^1
2*log(625)^2 + 1215973440*z^5*log(5)^6*log(625) + 9497495360*z^5*log(5)^3*log(625) - 855600912*z^5*log(5)^8*lo
g(625) + 13353194984*z^5*log(5)^5*log(625) - 184310640*z^5*log(5)*log(625)^4 - 2876069088*z^5*log(5)^5*log(625
)^2 + 160323520*z^5*log(5)^9*log(625) - 2728181808*z^5*log(5)^4*log(625)^2 - 30926256*z^5*log(5)^10*log(625) +
990592*z^5*log(5)^11*log(625) - 364544*z^5*log(5)^12*log(625) + 132096*z^5*log(5)^13*log(625) - 8192*z^5*log(
5)^14*log(625) - 11135933108*z^5*log(5)^3*log(625)^2 + 2104890516*z^5*log(5)^2*log(625)^3 - 3271912237*z^5*log
(5)^2*log(625) + 3105872352*z^5*log(5)^7*log(625) + 1183695336*z^5*log(5)^3*log(625)^3 - 2672150172*z^5*log(5)
*log(625)^2 + 2581668072*z^5*log(5)*log(625)^3 + 11029505352*z^5*log(5)^4*log(625) - 37976590196*z^5*log(5)^3
- 7612365760*z^5*log(5)^5 - 11759677728*z^5*log(5)^6 + 19970762026*z^5*log(5)^4 - 2609404160*z^5*log(5)^7 - 12
27877888*z^5*log(5)^9 + 1212381648*z^5*log(625)^3 + 31218036596*z^5*log(5)^2 + 7000018859*z^5*log(625) + 72207
7440*z^5*log(5)^10 - 553335264*z^5*log(5)^8 - 489522528*z^5*log(625)^4 - 31967952756*z^5*log(5) - 231140288*z^
5*log(5)^11 - 4434737216*z^5*log(625)^2 + 58274528*z^5*log(5)^12 + 36450000*z^5*log(625)^5 - 9070336*z^5*log(5
)^13 + 1091584*z^5*log(5)^14 - 132096*z^5*log(5)^15 + 8192*z^5*log(5)^16 + 705818410*z^5 + 4925603232*z^4*log(
5)^5*log(625)^2 + 2112984720*z^4*log(5)^8*log(625) - 507883176*z^4*log(5)^3*log(625)^3 - 422627760*z^4*log(5)^
7*log(625)^2 + 385436880*z^4*log(5)^2*log(625)^4 + 219805776*z^4*log(5)^4*log(625)^2 + 203656464*z^4*log(5)^5*
log(625)^3 - 10394524512*z^4*log(5)^7*log(625) + 103641408*z^4*log(5)^8*log(625)^2 - 38158992*z^4*log(5)^6*log
(625)^3 - 21893120*z^4*log(5)^9*log(625)^2 - 19789920*z^4*log(5)^3*log(625)^4 + 6473088*z^4*log(5)^7*log(625)^
3 + 3421440*z^4*log(5)^4*log(625)^4 + 1168896*z^4*log(5)^10*log(625)^2 - 559872*z^4*log(5)^5*log(625)^4 - 1797
12*z^4*log(5)^8*log(625)^3 + 33024*z^4*log(5)^11*log(625)^2 - 2048*z^4*log(5)^12*log(625)^2 + 23951396350*z^4*
log(5)*log(625) - 7484890188*z^4*log(5)^2*log(625)^2 - 34728028771*z^4*log(5)^2*log(625) + 15901362260*z^4*log
(5)^3*log(625)^2 + 17457193960*z^4*log(5)^4*log(625) - 2963843028*z^4*log(5)^2*log(625)^3 - 268816256*z^4*log(
5)^9*log(625) - 107289360*z^4*log(5)*log(625)^4 + 21409328*z^4*log(5)^10*log(625) + 14069592*z^4*log(5)*log(62
5)^3 + 6691456*z^4*log(5)^11*log(625) - 280576*z^4*log(5)^13*log(625) + 274432*z^4*log(5)^12*log(625) + 16384*
z^4*log(5)^14*log(625) + 8491244604*z^4*log(5)*log(625)^2 - 3958773472*z^4*log(5)^3*log(625) - 33945822712*z^4
*log(5)^5*log(625) + 7771370688*z^4*log(5)^6*log(625) - 1323311364*z^4*log(5)^4*log(625)^3 + 1116327384*z^4*lo
g(5)^6*log(625)^2 + 235978643332*z^4*log(5)^3 + 28864119904*z^4*log(5)^6 - 3055040512*z^4*log(5)^10 + 29553262
08*z^4*log(5)^7 - 21705874987*z^4*log(625) - 2878871760*z^4*log(625)^3 + 98727131908*z^4*log(5) - 221525920812
*z^4*log(5)^2 - 2362697568*z^4*log(5)^8 - 83946835838*z^4*log(5)^4 - 19328727360*z^4*log(5)^5 + 6343178880*z^4
*log(5)^9 + 5951283584*z^4*log(625)^2 + 922185408*z^4*log(5)^11 + 635322528*z^4*log(625)^4 - 210576544*z^4*log
(5)^12 - 36450000*z^4*log(625)^5 + 31544576*z^4*log(5)^13 - 3803136*z^4*log(5)^14 + 429056*z^4*log(5)^15 - 245
76*z^4*log(5)^16 - 2117455230*z^4 - 5056253112*z^3*log(5)^2*log(625)^2 + 36590909904*z^3*log(5)^5*log(625) - 5
19193008*z^3*log(5)^3*log(625)^3 + 472670496*z^3*log(5)^7*log(625)^2 - 199633248*z^3*log(5)^2*log(625)^4 - 447
6161224*z^3*log(5)^3*log(625)^2 - 104205312*z^3*log(5)^8*log(625)^2 - 102726432*z^3*log(5)^5*log(625)^3 + 2058
0192*z^3*log(5)^6*log(625)^3 + 17629696*z^3*log(5)^9*log(625)^2 - 2760192*z^3*log(5)^7*log(625)^3 + 1378944*z^
3*log(5)^3*log(625)^4 - 1140480*z^3*log(5)^4*log(625)^4 - 858624*z^3*log(5)^10*log(625)^2 + 186624*z^3*log(5)^
5*log(625)^4 + 33024*z^3*log(5)^11*log(625)^2 - 32256*z^3*log(5)^8*log(625)^3 - 2048*z^3*log(5)^12*log(625)^2
- 119016565348*z^3*log(5)*log(625) - 48652877872*z^3*log(5)^4*log(625) - 1402357680*z^3*log(5)*log(625)^3 - 95
00731896*z^3*log(5)*log(625)^2 - 774510048*z^3*log(5)^8*log(625) + 8988637248*z^3*log(5)^7*log(625) - 16213708
8*z^3*log(5)^9*log(625) + 99250272*z^3*log(5)*log(625)^4 + 91867744*z^3*log(5)^10*log(625) - 12911143104*z^3*l
og(5)^6*log(625) - 24288000*z^3*log(5)^11*log(625) + 1763328*z^3*log(5)^12*log(625) + 16384*z^3*log(5)^13*log(
625) + 2503084824*z^3*log(5)^2*log(625)^3 + 106774904202*z^3*log(5)^2*log(625) + 46433734080*z^3*log(5)^3*log(
625) - 1875765744*z^3*log(5)^6*log(625)^2 - 1321103232*z^3*log(5)^5*log(625)^2 - 1190288160*z^3*log(5)^4*log(6
25)^2 + 1016363880*z^3*log(5)^4*log(625)^3 - 91421991032*z^3*log(5) + 3864329216*z^3*log(5)^10 + 398924518664*
z^3*log(5)^2 - 8012949760*z^3*log(5)^7 + 20871559098*z^3*log(625) + 66470526036*z^3*log(5)^4 + 32064662912*z^3
*log(5)^5 + 6092183840*z^3*log(625)^2 + 1580391792*z^3*log(625)^3 - 1078169216*z^3*log(5)^11 - 18161258048*z^3
*log(5)^6 - 9461309696*z^3*log(5)^9 - 408685414008*z^3*log(5)^3 + 9037260864*z^3*log(5)^8 + 220962240*z^3*log(
5)^12 - 172746432*z^3*log(625)^4 - 29695488*z^3*log(5)^13 + 14580000*z^3*log(625)^5 + 3272704*z^3*log(5)^14 -
329728*z^3*log(5)^15 + 16384*z^3*log(5)^16 + 1411636820*z^3 + 731908944*z^2*log(5)^6*log(625)^2 - 2018465424*z
^2*log(5)*log(625)^3 + 343730088*z^2*log(5)^2*log(625)^3 + 21804595032*z^2*log(5)^2*log(625)^2 - 239178888*z^2
*log(5)^4*log(625)^3 - 126620064*z^2*log(5)^7*log(625)^2 + 116307072*z^2*log(5)^5*log(625)^2 - 101972880*z^2*l
og(5)^3*log(625)^3 + 55735776*z^2*log(5)^2*log(625)^4 + 29572992*z^2*log(5)^8*log(625)^2 + 6754464*z^2*log(5)^
5*log(625)^3 - 5993568*z^2*log(5)^6*log(625)^3 - 3483136*z^2*log(5)^9*log(625)^2 + 1233792*z^2*log(5)^3*log(62
5)^4 + 622080*z^2*log(5)^7*log(625)^3 + 145152*z^2*log(5)^4*log(625)^4 - 33024*z^2*log(5)^11*log(625)^2 + 3225
6*z^2*log(5)^8*log(625)^3 - 20736*z^2*log(5)^5*log(625)^4 + 10752*z^2*log(5)^10*log(625)^2 + 2048*z^2*log(5)^1
2*log(625)^2 - 895330080*z^2*log(5)^8*log(625) - 64822705034*z^2*log(5)^2*log(625) + 87868168964*z^2*log(5)*lo
g(625) + 353612672*z^2*log(5)^9*log(625) - 110582624*z^2*log(5)^10*log(625) - 50188608*z^2*log(5)^7*log(625) -
49141728*z^2*log(5)*log(625)^4 - 42206280*z^2*log(5)*log(625)^2 + 23227136*z^2*log(5)^11*log(625) - 2762752*z
^2*log(5)^12*log(625) + 280576*z^2*log(5)^13*log(625) - 16384*z^2*log(5)^14*log(625) + 3713381200*z^2*log(5)^5
*log(625) - 3516020928*z^2*log(5)^6*log(625) + 7344185168*z^2*log(5)^4*log(625) + 1396510560*z^2*log(5)^4*log(
625)^2 - 50162611328*z^2*log(5)^3*log(625) - 5122688120*z^2*log(5)^3*log(625)^2 + 12523800192*z^2*log(5)^5 - 3
866129856*z^2*log(5)^8 + 11799892736*z^2*log(5)^7 - 20116481088*z^2*log(5)^6 + 174542709464*z^2*log(5)^3 + 236
4424192*z^2*log(5)^9 + 10878270548*z^2*log(5)^4 - 178373890200*z^2*log(5)^2 - 9547849184*z^2*log(625)^2 + 8276
71536*z^2*log(625)^3 - 2379615962*z^2*log(625) - 555588096*z^2*log(5)^10 + 65308800*z^2*log(5)^11 + 28952640*z
^2*log(625)^4 + 16991680*z^2*log(5)^12 - 10534400*z^2*log(5)^13 - 2916000*z^2*log(625)^5 + 2150400*z^2*log(5)^
14 - 264192*z^2*log(5)^15 + 16384*z^2*log(5)^16 + 1582709208*z^2*log(5) + 1411636820*z^2 + 2205604944*z*log(5)
^4*log(625)^2 + 29199388648*z*log(5)^4*log(625) - 6021563364*z*log(5)^2*log(625)^2 + 6848432532*z*log(5)*log(6
25)^2 - 794356128*z*log(5)^5*log(625)^2 + 10768621312*z*log(5)^3*log(625) - 1800735264*z*log(5)^7*log(625) - 1
97216172*z*log(5)^2*log(625)^3 + 34038216*z*log(5)^3*log(625)^3 + 25612884*z*log(5)^4*log(625)^3 - 8005392*z*l
og(5)^2*log(625)^4 - 5089536*z*log(5)^8*log(625)^2 + 4864752*z*log(5)^7*log(625)^2 + 4791672*z*log(5)^6*log(62
5)^2 + 3868848*z*log(5)^5*log(625)^3 + 934416*z*log(5)^6*log(625)^3 - 308448*z*log(5)^3*log(625)^4 + 129024*z*
log(5)^10*log(625)^2 - 119808*z*log(5)^9*log(625)^2 - 102528*z*log(5)^7*log(625)^3 + 949389768*z*log(5)*log(62
5)^3 - 22285898168*z*log(5)^5*log(625) - 30871833629*z*log(5)^2*log(625) + 397443312*z*log(5)^8*log(625) + 875
1051648*z*log(5)^6*log(625) - 63067072*z*log(5)^9*log(625) + 23127324946*z*log(5)*log(625) + 21633872*z*log(5)
^10*log(625) + 10929168*z*log(5)*log(625)^4 - 5309056*z*log(5)^11*log(625) + 960512*z*log(5)^12*log(625) - 148
480*z*log(5)^13*log(625) + 8192*z*log(5)^14*log(625) - 2580460164*z*log(5)^3*log(625)^2 - 5290987104*z*log(5)^
8 + 116891477228*z*log(5)^3 - 848443968*z*log(625)^3 - 812301408*z*log(625)^2 - 762456576*z*log(5)^7 + 5614126
72*z*log(5)^11 - 145936544*z*log(5)^12 - 6032039717*z*log(625) + 36031790828*z*log(5) + 29328640*z*log(5)^13 -
5927904*z*log(625)^4 - 4364288*z*log(5)^14 + 461824*z*log(5)^15 + 291600*z*log(625)^5 - 24576*z*log(5)^16 + 3
720158976*z*log(5)^9 + 16489887584*z*log(5)^6 - 15539807680*z*log(5)^5 - 110012275324*z*log(5)^2 - 61970024830
*z*log(5)^4 - 1717502720*z*log(5)^10 - 2117455230*z - 18749736*log(5)^6*log(625)^2 + 1558584*log(5)^3*log(625)
^3 + 1486656*log(5)^8*log(625)^2 - 1004148*log(5)^4*log(625)^3 + 944172*log(5)^2*log(625)^3 - 742320*log(5)^5*
log(625)^3 - 578736*log(5)^7*log(625)^2 + 462672*log(5)^2*log(625)^4 - 133632*log(5)^9*log(625)^2 + 18144*log(
5)^3*log(625)^4 - 10512*log(5)^6*log(625)^3 + 1152*log(5)^7*log(625)^3 + 26919575469*log(5)^2*log(625) - 28406
414466*log(5)*log(625) + 405742752*log(5)^7*log(625) - 71220168*log(5)*log(625)^3 - 27454320*log(5)^8*log(625)
- 19915776*log(5)^9*log(625) + 6597936*log(5)^10*log(625) - 1312128*log(5)^11*log(625) - 851472*log(5)*log(62
5)^4 + 129024*log(5)^12*log(625) + 4018123944*log(5)^5*log(625) - 11729119392*log(5)^3*log(625) - 3124588788*l
og(5)*log(625)^2 - 3000186936*log(5)^4*log(625) + 1389857652*log(5)^2*log(625)^2 + 486397476*log(5)^3*log(625)
^2 - 444909744*log(5)^4*log(625)^2 - 1905774336*log(5)^6*log(625) + 172571616*log(5)^5*log(625)^2 - 8075082582
0*log(5)^3 + 3239520224*log(5)^6 + 2781084960*log(5)^8 - 2775865856*log(5)^7 - 12951688156*log(5) + 2751420384
*log(625)^2 + 79769531076*log(5)^2 - 1696107136*log(5)^9 + 741724672*log(5)^10 + 2245952709*log(625) + 4774795
5498*log(5)^4 - 239597376*log(5)^11 + 106870752*log(625)^3 + 60284640*log(5)^12 - 11572992*log(5)^13 + 1652736
*log(5)^14 + 603936*log(625)^4 - 164864*log(5)^15 - 11664*log(625)^5 + 8192*log(5)^16 - 12427123008*log(5)^5 +
705818410, z, k)*(11694302885376*log(5) - 1584889996608*log(625) + 962226428367744*log(5)*log(625) + 27289659
6794304*log(5)*log(625)^2 - 2820257700950592*log(5)^2*log(625) - 1986051861504*log(5)*log(625)^3 + 37349779707
31392*log(5)^3*log(625) + 36143656704*log(5)*log(625)^4 - 2381582679110784*log(5)^4*log(625) + 196925245144704
*log(5)^5*log(625) + 814821271238016*log(5)^6*log(625) - 612186246524160*log(5)^7*log(625) + 218945211618816*l
og(5)^8*log(625) - 45739159584768*log(5)^9*log(625) + 5971206200832*log(5)^10*log(625) - 819659326464*log(5)^1
1*log(625) + 137298530304*log(5)^12*log(625) - 53102739456*log(5)^13*log(625) + 10749542400*log(5)^14*log(625)
- 573308928*log(5)^15*log(625) + x*(50987613817152*log(625) - 276143849215488*log(5) - 1071386004983040*log(5
)*log(625) - 312805842975360*log(5)*log(625)^2 + 2762581431558528*log(5)^2*log(625) + 3157253137152*log(5)*log
(625)^3 - 3865488369736320*log(5)^3*log(625) - 190649852928*log(5)*log(625)^4 + 3073343047912512*log(5)^4*log(
625) - 1262919795115392*log(5)^5*log(625) - 162689269326336*log(5)^6*log(625) + 494784627821568*log(5)^7*log(6
25) - 268674832009728*log(5)^8*log(625) + 71239345744896*log(5)^9*log(625) - 8162493700608*log(5)^10*log(625)
- 531547702272*log(5)^11*log(625) + 229504223232*log(5)^12*log(625) - 10322546688*log(5)^13*log(625) - 1552711
6800*log(5)^14*log(625) + 3630956544*log(5)^15*log(625) - 191102976*log(5)^16*log(625) + 2668478230152576*log(
5)^2 - 6564136860732672*log(5)^3 + 9905965117560576*log(5)^4 - 9306244673432064*log(5)^5 + 5481213033635712*lo
g(5)^6 - 1715280217221888*log(5)^7 + 208678899594240*log(5)^8 - 155200870471680*log(5)^9 + 251241234223104*log
(5)^10 - 183443847911424*log(5)^11 + 84871488420864*log(5)^12 - 28512437114880*log(5)^13 + 7312522530816*log(5
)^14 - 1416019304448*log(5)^15 + 204719063040*log(5)^16 - 20161363968*log(5)^17 + 955514880*log(5)^18 + 113246
850767616*log(625)^2 + 1673986766976*log(625)^3 + 124802187264*log(625)^4 - 816293376*log(625)^5 + 38079853699
5072*log(5)^2*log(625)^2 - 5796778079232*log(5)^2*log(625)^3 - 235614380052096*log(5)^3*log(625)^2 + 545404907
52*log(5)^2*log(625)^4 - 627685936128*log(5)^3*log(625)^3 + 67778962043904*log(5)^4*log(625)^2 + 52786971648*l
og(5)^3*log(625)^4 + 4749922975104*log(5)^4*log(625)^3 + 36762104752128*log(5)^5*log(625)^2 - 32651735040*log(
5)^4*log(625)^4 - 3807110004480*log(5)^5*log(625)^3 - 48151414566144*log(5)^6*log(625)^2 + 7497805824*log(5)^5
*log(625)^4 + 1304786174976*log(5)^6*log(625)^3 + 23124328270848*log(5)^7*log(625)^2 - 184972750848*log(5)^7*l
og(625)^3 - 5578972194816*log(5)^8*log(625)^2 - 5441955840*log(5)^8*log(625)^3 + 582598324224*log(5)^9*log(625
)^2 + 510603264*log(5)^9*log(625)^3 + 1746800640*log(5)^10*log(625)^2 + 18059231232*log(5)^11*log(625)^2 - 257
9890176*log(5)^12*log(625)^2 + 13639703933952) - 2284164544363776*log(5)^2 + 7339787962225920*log(5)^3 - 10882
044720471168*log(5)^4 + 8767368964995840*log(5)^5 - 3487618441898496*log(5)^6 + 228882726867456*log(5)^7 + 131
918979476736*log(5)^8 + 237807429189120*log(5)^9 - 292391140939776*log(5)^10 + 166545356746752*log(5)^11 - 635
13368939520*log(5)^12 + 17875642484736*log(5)^13 - 3699616260096*log(5)^14 + 562917703680*log(5)^15 - 58047528
960*log(5)^16 + 2866544640*log(5)^17 - 107087414200704*log(625)^2 + 3256567151616*log(625)^3 - 107750725632*lo
g(625)^4 + root(12476089554*z^5*log(5)*log(625) - 4950250980*z^5*log(5)^2*log(625)^2 + 484358724*z^5*log(5)^4*
log(625)^3 - 239636880*z^5*log(5)^2*log(625)^4 - 94885776*z^5*log(5)^5*log(625)^3 + 88216560*z^5*log(5)^7*log(
625)^2 - 54064008*z^5*log(5)^6*log(625)^2 - 25406208*z^5*log(5)^8*log(625)^2 + 19994256*z^5*log(5)^6*log(625)^
3 + 19789920*z^5*log(5)^3*log(625)^4 + 8000000*z^5*log(5)^9*log(625)^2 - 4233600*z^5*log(5)^7*log(625)^3 - 342
1440*z^5*log(5)^4*log(625)^4 + 559872*z^5*log(5)^5*log(625)^4 - 450048*z^5*log(5)^10*log(625)^2 + 179712*z^5*l
og(5)^8*log(625)^3 - 33024*z^5*log(5)^11*log(625)^2 + 2048*z^5*log(5)^12*log(625)^2 + 1215973440*z^5*log(5)^6*
log(625) + 9497495360*z^5*log(5)^3*log(625) - 855600912*z^5*log(5)^8*log(625) + 13353194984*z^5*log(5)^5*log(6
25) - 184310640*z^5*log(5)*log(625)^4 - 2876069088*z^5*log(5)^5*log(625)^2 + 160323520*z^5*log(5)^9*log(625) -
2728181808*z^5*log(5)^4*log(625)^2 - 30926256*z^5*log(5)^10*log(625) + 990592*z^5*log(5)^11*log(625) - 364544
*z^5*log(5)^12*log(625) + 132096*z^5*log(5)^13*log(625) - 8192*z^5*log(5)^14*log(625) - 11135933108*z^5*log(5)
^3*log(625)^2 + 2104890516*z^5*log(5)^2*log(625)^3 - 3271912237*z^5*log(5)^2*log(625) + 3105872352*z^5*log(5)^
7*log(625) + 1183695336*z^5*log(5)^3*log(625)^3 - 2672150172*z^5*log(5)*log(625)^2 + 2581668072*z^5*log(5)*log
(625)^3 + 11029505352*z^5*log(5)^4*log(625) - 37976590196*z^5*log(5)^3 - 7612365760*z^5*log(5)^5 - 11759677728
*z^5*log(5)^6 + 19970762026*z^5*log(5)^4 - 2609404160*z^5*log(5)^7 - 1227877888*z^5*log(5)^9 + 1212381648*z^5*
log(625)^3 + 31218036596*z^5*log(5)^2 + 7000018859*z^5*log(625) + 722077440*z^5*log(5)^10 - 553335264*z^5*log(
5)^8 - 489522528*z^5*log(625)^4 - 31967952756*z^5*log(5) - 231140288*z^5*log(5)^11 - 4434737216*z^5*log(625)^2
+ 58274528*z^5*log(5)^12 + 36450000*z^5*log(625)^5 - 9070336*z^5*log(5)^13 + 1091584*z^5*log(5)^14 - 132096*z
^5*log(5)^15 + 8192*z^5*log(5)^16 + 705818410*z^5 + 4925603232*z^4*log(5)^5*log(625)^2 + 2112984720*z^4*log(5)
^8*log(625) - 507883176*z^4*log(5)^3*log(625)^3 - 422627760*z^4*log(5)^7*log(625)^2 + 385436880*z^4*log(5)^2*l
og(625)^4 + 219805776*z^4*log(5)^4*log(625)^2 + 203656464*z^4*log(5)^5*log(625)^3 - 10394524512*z^4*log(5)^7*l
og(625) + 103641408*z^4*log(5)^8*log(625)^2 - 38158992*z^4*log(5)^6*log(625)^3 - 21893120*z^4*log(5)^9*log(625
)^2 - 19789920*z^4*log(5)^3*log(625)^4 + 6473088*z^4*log(5)^7*log(625)^3 + 3421440*z^4*log(5)^4*log(625)^4 + 1
168896*z^4*log(5)^10*log(625)^2 - 559872*z^4*log(5)^5*log(625)^4 - 179712*z^4*log(5)^8*log(625)^3 + 33024*z^4*
log(5)^11*log(625)^2 - 2048*z^4*log(5)^12*log(625)^2 + 23951396350*z^4*log(5)*log(625) - 7484890188*z^4*log(5)
^2*log(625)^2 - 34728028771*z^4*log(5)^2*log(625) + 15901362260*z^4*log(5)^3*log(625)^2 + 17457193960*z^4*log(
5)^4*log(625) - 2963843028*z^4*log(5)^2*log(625)^3 - 268816256*z^4*log(5)^9*log(625) - 107289360*z^4*log(5)*lo
g(625)^4 + 21409328*z^4*log(5)^10*log(625) + 14069592*z^4*log(5)*log(625)^3 + 6691456*z^4*log(5)^11*log(625) -
280576*z^4*log(5)^13*log(625) + 274432*z^4*log(5)^12*log(625) + 16384*z^4*log(5)^14*log(625) + 8491244604*z^4
*log(5)*log(625)^2 - 3958773472*z^4*log(5)^3*log(625) - 33945822712*z^4*log(5)^5*log(625) + 7771370688*z^4*log
(5)^6*log(625) - 1323311364*z^4*log(5)^4*log(625)^3 + 1116327384*z^4*log(5)^6*log(625)^2 + 235978643332*z^4*lo
g(5)^3 + 28864119904*z^4*log(5)^6 - 3055040512*z^4*log(5)^10 + 2955326208*z^4*log(5)^7 - 21705874987*z^4*log(6
25) - 2878871760*z^4*log(625)^3 + 98727131908*z^4*log(5) - 221525920812*z^4*log(5)^2 - 2362697568*z^4*log(5)^8
- 83946835838*z^4*log(5)^4 - 19328727360*z^4*log(5)^5 + 6343178880*z^4*log(5)^9 + 5951283584*z^4*log(625)^2 +
922185408*z^4*log(5)^11 + 635322528*z^4*log(625)^4 - 210576544*z^4*log(5)^12 - 36450000*z^4*log(625)^5 + 3154
4576*z^4*log(5)^13 - 3803136*z^4*log(5)^14 + 429056*z^4*log(5)^15 - 24576*z^4*log(5)^16 - 2117455230*z^4 - 505
6253112*z^3*log(5)^2*log(625)^2 + 36590909904*z^3*log(5)^5*log(625) - 519193008*z^3*log(5)^3*log(625)^3 + 4726
70496*z^3*log(5)^7*log(625)^2 - 199633248*z^3*log(5)^2*log(625)^4 - 4476161224*z^3*log(5)^3*log(625)^2 - 10420
5312*z^3*log(5)^8*log(625)^2 - 102726432*z^3*log(5)^5*log(625)^3 + 20580192*z^3*log(5)^6*log(625)^3 + 17629696
*z^3*log(5)^9*log(625)^2 - 2760192*z^3*log(5)^7*log(625)^3 + 1378944*z^3*log(5)^3*log(625)^4 - 1140480*z^3*log
(5)^4*log(625)^4 - 858624*z^3*log(5)^10*log(625)^2 + 186624*z^3*log(5)^5*log(625)^4 + 33024*z^3*log(5)^11*log(
625)^2 - 32256*z^3*log(5)^8*log(625)^3 - 2048*z^3*log(5)^12*log(625)^2 - 119016565348*z^3*log(5)*log(625) - 48
652877872*z^3*log(5)^4*log(625) - 1402357680*z^3*log(5)*log(625)^3 - 9500731896*z^3*log(5)*log(625)^2 - 774510
048*z^3*log(5)^8*log(625) + 8988637248*z^3*log(5)^7*log(625) - 162137088*z^3*log(5)^9*log(625) + 99250272*z^3*
log(5)*log(625)^4 + 91867744*z^3*log(5)^10*log(625) - 12911143104*z^3*log(5)^6*log(625) - 24288000*z^3*log(5)^
11*log(625) + 1763328*z^3*log(5)^12*log(625) + 16384*z^3*log(5)^13*log(625) + 2503084824*z^3*log(5)^2*log(625)
^3 + 106774904202*z^3*log(5)^2*log(625) + 46433734080*z^3*log(5)^3*log(625) - 1875765744*z^3*log(5)^6*log(625)
^2 - 1321103232*z^3*log(5)^5*log(625)^2 - 1190288160*z^3*log(5)^4*log(625)^2 + 1016363880*z^3*log(5)^4*log(625
)^3 - 91421991032*z^3*log(5) + 3864329216*z^3*log(5)^10 + 398924518664*z^3*log(5)^2 - 8012949760*z^3*log(5)^7
+ 20871559098*z^3*log(625) + 66470526036*z^3*log(5)^4 + 32064662912*z^3*log(5)^5 + 6092183840*z^3*log(625)^2 +
1580391792*z^3*log(625)^3 - 1078169216*z^3*log(5)^11 - 18161258048*z^3*log(5)^6 - 9461309696*z^3*log(5)^9 - 4
08685414008*z^3*log(5)^3 + 9037260864*z^3*log(5)^8 + 220962240*z^3*log(5)^12 - 172746432*z^3*log(625)^4 - 2969
5488*z^3*log(5)^13 + 14580000*z^3*log(625)^5 + 3272704*z^3*log(5)^14 - 329728*z^3*log(5)^15 + 16384*z^3*log(5)
^16 + 1411636820*z^3 + 731908944*z^2*log(5)^6*log(625)^2 - 2018465424*z^2*log(5)*log(625)^3 + 343730088*z^2*lo
g(5)^2*log(625)^3 + 21804595032*z^2*log(5)^2*log(625)^2 - 239178888*z^2*log(5)^4*log(625)^3 - 126620064*z^2*lo
g(5)^7*log(625)^2 + 116307072*z^2*log(5)^5*log(625)^2 - 101972880*z^2*log(5)^3*log(625)^3 + 55735776*z^2*log(5
)^2*log(625)^4 + 29572992*z^2*log(5)^8*log(625)^2 + 6754464*z^2*log(5)^5*log(625)^3 - 5993568*z^2*log(5)^6*log
(625)^3 - 3483136*z^2*log(5)^9*log(625)^2 + 1233792*z^2*log(5)^3*log(625)^4 + 622080*z^2*log(5)^7*log(625)^3 +
145152*z^2*log(5)^4*log(625)^4 - 33024*z^2*log(5)^11*log(625)^2 + 32256*z^2*log(5)^8*log(625)^3 - 20736*z^2*l
og(5)^5*log(625)^4 + 10752*z^2*log(5)^10*log(625)^2 + 2048*z^2*log(5)^12*log(625)^2 - 895330080*z^2*log(5)^8*l
og(625) - 64822705034*z^2*log(5)^2*log(625) + 87868168964*z^2*log(5)*log(625) + 353612672*z^2*log(5)^9*log(625
) - 110582624*z^2*log(5)^10*log(625) - 50188608*z^2*log(5)^7*log(625) - 49141728*z^2*log(5)*log(625)^4 - 42206
280*z^2*log(5)*log(625)^2 + 23227136*z^2*log(5)^11*log(625) - 2762752*z^2*log(5)^12*log(625) + 280576*z^2*log(
5)^13*log(625) - 16384*z^2*log(5)^14*log(625) + 3713381200*z^2*log(5)^5*log(625) - 3516020928*z^2*log(5)^6*log
(625) + 7344185168*z^2*log(5)^4*log(625) + 1396510560*z^2*log(5)^4*log(625)^2 - 50162611328*z^2*log(5)^3*log(6
25) - 5122688120*z^2*log(5)^3*log(625)^2 + 12523800192*z^2*log(5)^5 - 3866129856*z^2*log(5)^8 + 11799892736*z^
2*log(5)^7 - 20116481088*z^2*log(5)^6 + 174542709464*z^2*log(5)^3 + 2364424192*z^2*log(5)^9 + 10878270548*z^2*
log(5)^4 - 178373890200*z^2*log(5)^2 - 9547849184*z^2*log(625)^2 + 827671536*z^2*log(625)^3 - 2379615962*z^2*l
og(625) - 555588096*z^2*log(5)^10 + 65308800*z^2*log(5)^11 + 28952640*z^2*log(625)^4 + 16991680*z^2*log(5)^12
- 10534400*z^2*log(5)^13 - 2916000*z^2*log(625)^5 + 2150400*z^2*log(5)^14 - 264192*z^2*log(5)^15 + 16384*z^2*l
og(5)^16 + 1582709208*z^2*log(5) + 1411636820*z^2 + 2205604944*z*log(5)^4*log(625)^2 + 29199388648*z*log(5)^4*
log(625) - 6021563364*z*log(5)^2*log(625)^2 + 6848432532*z*log(5)*log(625)^2 - 794356128*z*log(5)^5*log(625)^2
+ 10768621312*z*log(5)^3*log(625) - 1800735264*z*log(5)^7*log(625) - 197216172*z*log(5)^2*log(625)^3 + 340382
16*z*log(5)^3*log(625)^3 + 25612884*z*log(5)^4*log(625)^3 - 8005392*z*log(5)^2*log(625)^4 - 5089536*z*log(5)^8
*log(625)^2 + 4864752*z*log(5)^7*log(625)^2 + 4791672*z*log(5)^6*log(625)^2 + 3868848*z*log(5)^5*log(625)^3 +
934416*z*log(5)^6*log(625)^3 - 308448*z*log(5)^3*log(625)^4 + 129024*z*log(5)^10*log(625)^2 - 119808*z*log(5)^
9*log(625)^2 - 102528*z*log(5)^7*log(625)^3 + 949389768*z*log(5)*log(625)^3 - 22285898168*z*log(5)^5*log(625)
- 30871833629*z*log(5)^2*log(625) + 397443312*z*log(5)^8*log(625) + 8751051648*z*log(5)^6*log(625) - 63067072*
z*log(5)^9*log(625) + 23127324946*z*log(5)*log(625) + 21633872*z*log(5)^10*log(625) + 10929168*z*log(5)*log(62
5)^4 - 5309056*z*log(5)^11*log(625) + 960512*z*log(5)^12*log(625) - 148480*z*log(5)^13*log(625) + 8192*z*log(5
)^14*log(625) - 2580460164*z*log(5)^3*log(625)^2 - 5290987104*z*log(5)^8 + 116891477228*z*log(5)^3 - 848443968
*z*log(625)^3 - 812301408*z*log(625)^2 - 762456576*z*log(5)^7 + 561412672*z*log(5)^11 - 145936544*z*log(5)^12
- 6032039717*z*log(625) + 36031790828*z*log(5) + 29328640*z*log(5)^13 - 5927904*z*log(625)^4 - 4364288*z*log(5
)^14 + 461824*z*log(5)^15 + 291600*z*log(625)^5 - 24576*z*log(5)^16 + 3720158976*z*log(5)^9 + 16489887584*z*lo
g(5)^6 - 15539807680*z*log(5)^5 - 110012275324*z*log(5)^2 - 61970024830*z*log(5)^4 - 1717502720*z*log(5)^10 -
2117455230*z - 18749736*log(5)^6*log(625)^2 + 1558584*log(5)^3*log(625)^3 + 1486656*log(5)^8*log(625)^2 - 1004
148*log(5)^4*log(625)^3 + 944172*log(5)^2*log(625)^3 - 742320*log(5)^5*log(625)^3 - 578736*log(5)^7*log(625)^2
+ 462672*log(5)^2*log(625)^4 - 133632*log(5)^9*log(625)^2 + 18144*log(5)^3*log(625)^4 - 10512*log(5)^6*log(62
5)^3 + 1152*log(5)^7*log(625)^3 + 26919575469*log(5)^2*log(625) - 28406414466*log(5)*log(625) + 405742752*log(
5)^7*log(625) - 71220168*log(5)*log(625)^3 - 27454320*log(5)^8*log(625) - 19915776*log(5)^9*log(625) + 6597936
*log(5)^10*log(625) - 1312128*log(5)^11*log(625) - 851472*log(5)*log(625)^4 + 129024*log(5)^12*log(625) + 4018
123944*log(5)^5*log(625) - 11729119392*log(5)^3*log(625) - 3124588788*log(5)*log(625)^2 - 3000186936*log(5)^4*
log(625) + 1389857652*log(5)^2*log(625)^2 + 486397476*log(5)^3*log(625)^2 - 444909744*log(5)^4*log(625)^2 - 19
05774336*log(5)^6*log(625) + 172571616*log(5)^5*log(625)^2 - 80750825820*log(5)^3 + 3239520224*log(5)^6 + 2781
084960*log(5)^8 - 2775865856*log(5)^7 - 12951688156*log(5) + 2751420384*log(625)^2 + 79769531076*log(5)^2 - 16
96107136*log(5)^9 + 741724672*log(5)^10 + 2245952709*log(625) + 47747955498*log(5)^4 - 239597376*log(5)^11 + 1
06870752*log(625)^3 + 60284640*log(5)^12 - 11572992*log(5)^13 + 1652736*log(5)^14 + 603936*log(625)^4 - 164864
*log(5)^15 - 11664*log(625)^5 + 8192*log(5)^16 - 12427123008*log(5)^5 + 705818410, z, k)*(211150489716864*log(
625) - 1092401454993408*log(5) + root(12476089554*z^5*log(5)*log(625) - 4950250980*z^5*log(5)^2*log(625)^2 + 4
84358724*z^5*log(5)^4*log(625)^3 - 239636880*z^5*log(5)^2*log(625)^4 - 94885776*z^5*log(5)^5*log(625)^3 + 8821
6560*z^5*log(5)^7*log(625)^2 - 54064008*z^5*log(5)^6*log(625)^2 - 25406208*z^5*log(5)^8*log(625)^2 + 19994256*
z^5*log(5)^6*log(625)^3 + 19789920*z^5*log(5)^3*log(625)^4 + 8000000*z^5*log(5)^9*log(625)^2 - 4233600*z^5*log
(5)^7*log(625)^3 - 3421440*z^5*log(5)^4*log(625)^4 + 559872*z^5*log(5)^5*log(625)^4 - 450048*z^5*log(5)^10*log
(625)^2 + 179712*z^5*log(5)^8*log(625)^3 - 33024*z^5*log(5)^11*log(625)^2 + 2048*z^5*log(5)^12*log(625)^2 + 12
15973440*z^5*log(5)^6*log(625) + 9497495360*z^5*log(5)^3*log(625) - 855600912*z^5*log(5)^8*log(625) + 13353194
984*z^5*log(5)^5*log(625) - 184310640*z^5*log(5)*log(625)^4 - 2876069088*z^5*log(5)^5*log(625)^2 + 160323520*z
^5*log(5)^9*log(625) - 2728181808*z^5*log(5)^4*log(625)^2 - 30926256*z^5*log(5)^10*log(625) + 990592*z^5*log(5
)^11*log(625) - 364544*z^5*log(5)^12*log(625) + 132096*z^5*log(5)^13*log(625) - 8192*z^5*log(5)^14*log(625) -
11135933108*z^5*log(5)^3*log(625)^2 + 2104890516*z^5*log(5)^2*log(625)^3 - 3271912237*z^5*log(5)^2*log(625) +
3105872352*z^5*log(5)^7*log(625) + 1183695336*z^5*log(5)^3*log(625)^3 - 2672150172*z^5*log(5)*log(625)^2 + 258
1668072*z^5*log(5)*log(625)^3 + 11029505352*z^5*log(5)^4*log(625) - 37976590196*z^5*log(5)^3 - 7612365760*z^5*
log(5)^5 - 11759677728*z^5*log(5)^6 + 19970762026*z^5*log(5)^4 - 2609404160*z^5*log(5)^7 - 1227877888*z^5*log(
5)^9 + 1212381648*z^5*log(625)^3 + 31218036596*z^5*log(5)^2 + 7000018859*z^5*log(625) + 722077440*z^5*log(5)^1
0 - 553335264*z^5*log(5)^8 - 489522528*z^5*log(625)^4 - 31967952756*z^5*log(5) - 231140288*z^5*log(5)^11 - 443
4737216*z^5*log(625)^2 + 58274528*z^5*log(5)^12 + 36450000*z^5*log(625)^5 - 9070336*z^5*log(5)^13 + 1091584*z^
5*log(5)^14 - 132096*z^5*log(5)^15 + 8192*z^5*log(5)^16 + 705818410*z^5 + 4925603232*z^4*log(5)^5*log(625)^2 +
2112984720*z^4*log(5)^8*log(625) - 507883176*z^4*log(5)^3*log(625)^3 - 422627760*z^4*log(5)^7*log(625)^2 + 38
5436880*z^4*log(5)^2*log(625)^4 + 219805776*z^4*log(5)^4*log(625)^2 + 203656464*z^4*log(5)^5*log(625)^3 - 1039
4524512*z^4*log(5)^7*log(625) + 103641408*z^4*log(5)^8*log(625)^2 - 38158992*z^4*log(5)^6*log(625)^3 - 2189312
0*z^4*log(5)^9*log(625)^2 - 19789920*z^4*log(5)^3*log(625)^4 + 6473088*z^4*log(5)^7*log(625)^3 + 3421440*z^4*l
og(5)^4*log(625)^4 + 1168896*z^4*log(5)^10*log(625)^2 - 559872*z^4*log(5)^5*log(625)^4 - 179712*z^4*log(5)^8*l
og(625)^3 + 33024*z^4*log(5)^11*log(625)^2 - 2048*z^4*log(5)^12*log(625)^2 + 23951396350*z^4*log(5)*log(625) -
7484890188*z^4*log(5)^2*log(625)^2 - 34728028771*z^4*log(5)^2*log(625) + 15901362260*z^4*log(5)^3*log(625)^2
+ 17457193960*z^4*log(5)^4*log(625) - 2963843028*z^4*log(5)^2*log(625)^3 - 268816256*z^4*log(5)^9*log(625) - 1
07289360*z^4*log(5)*log(625)^4 + 21409328*z^4*log(5)^10*log(625) + 14069592*z^4*log(5)*log(625)^3 + 6691456*z^
4*log(5)^11*log(625) - 280576*z^4*log(5)^13*log(625) + 274432*z^4*log(5)^12*log(625) + 16384*z^4*log(5)^14*log
(625) + 8491244604*z^4*log(5)*log(625)^2 - 3958773472*z^4*log(5)^3*log(625) - 33945822712*z^4*log(5)^5*log(625
) + 7771370688*z^4*log(5)^6*log(625) - 1323311364*z^4*log(5)^4*log(625)^3 + 1116327384*z^4*log(5)^6*log(625)^2
+ 235978643332*z^4*log(5)^3 + 28864119904*z^4*log(5)^6 - 3055040512*z^4*log(5)^10 + 2955326208*z^4*log(5)^7 -
21705874987*z^4*log(625) - 2878871760*z^4*log(625)^3 + 98727131908*z^4*log(5) - 221525920812*z^4*log(5)^2 - 2
362697568*z^4*log(5)^8 - 83946835838*z^4*log(5)^4 - 19328727360*z^4*log(5)^5 + 6343178880*z^4*log(5)^9 + 59512
83584*z^4*log(625)^2 + 922185408*z^4*log(5)^11 + 635322528*z^4*log(625)^4 - 210576544*z^4*log(5)^12 - 36450000
*z^4*log(625)^5 + 31544576*z^4*log(5)^13 - 3803136*z^4*log(5)^14 + 429056*z^4*log(5)^15 - 24576*z^4*log(5)^16
- 2117455230*z^4 - 5056253112*z^3*log(5)^2*log(625)^2 + 36590909904*z^3*log(5)^5*log(625) - 519193008*z^3*log(
5)^3*log(625)^3 + 472670496*z^3*log(5)^7*log(625)^2 - 199633248*z^3*log(5)^2*log(625)^4 - 4476161224*z^3*log(5
)^3*log(625)^2 - 104205312*z^3*log(5)^8*log(625)^2 - 102726432*z^3*log(5)^5*log(625)^3 + 20580192*z^3*log(5)^6
*log(625)^3 + 17629696*z^3*log(5)^9*log(625)^2 - 2760192*z^3*log(5)^7*log(625)^3 + 1378944*z^3*log(5)^3*log(62
5)^4 - 1140480*z^3*log(5)^4*log(625)^4 - 858624*z^3*log(5)^10*log(625)^2 + 186624*z^3*log(5)^5*log(625)^4 + 33
024*z^3*log(5)^11*log(625)^2 - 32256*z^3*log(5)^8*log(625)^3 - 2048*z^3*log(5)^12*log(625)^2 - 119016565348*z^
3*log(5)*log(625) - 48652877872*z^3*log(5)^4*log(625) - 1402357680*z^3*log(5)*log(625)^3 - 9500731896*z^3*log(
5)*log(625)^2 - 774510048*z^3*log(5)^8*log(625) + 8988637248*z^3*log(5)^7*log(625) - 162137088*z^3*log(5)^9*lo
g(625) + 99250272*z^3*log(5)*log(625)^4 + 91867744*z^3*log(5)^10*log(625) - 12911143104*z^3*log(5)^6*log(625)
- 24288000*z^3*log(5)^11*log(625) + 1763328*z^3*log(5)^12*log(625) + 16384*z^3*log(5)^13*log(625) + 2503084824
*z^3*log(5)^2*log(625)^3 + 106774904202*z^3*log(5)^2*log(625) + 46433734080*z^3*log(5)^3*log(625) - 1875765744
*z^3*log(5)^6*log(625)^2 - 1321103232*z^3*log(5)^5*log(625)^2 - 1190288160*z^3*log(5)^4*log(625)^2 + 101636388
0*z^3*log(5)^4*log(625)^3 - 91421991032*z^3*log(5) + 3864329216*z^3*log(5)^10 + 398924518664*z^3*log(5)^2 - 80
12949760*z^3*log(5)^7 + 20871559098*z^3*log(625) + 66470526036*z^3*log(5)^4 + 32064662912*z^3*log(5)^5 + 60921
83840*z^3*log(625)^2 + 1580391792*z^3*log(625)^3 - 1078169216*z^3*log(5)^11 - 18161258048*z^3*log(5)^6 - 94613
09696*z^3*log(5)^9 - 408685414008*z^3*log(5)^3 + 9037260864*z^3*log(5)^8 + 220962240*z^3*log(5)^12 - 172746432
*z^3*log(625)^4 - 29695488*z^3*log(5)^13 + 14580000*z^3*log(625)^5 + 3272704*z^3*log(5)^14 - 329728*z^3*log(5)
^15 + 16384*z^3*log(5)^16 + 1411636820*z^3 + 731908944*z^2*log(5)^6*log(625)^2 - 2018465424*z^2*log(5)*log(625
)^3 + 343730088*z^2*log(5)^2*log(625)^3 + 21804595032*z^2*log(5)^2*log(625)^2 - 239178888*z^2*log(5)^4*log(625
)^3 - 126620064*z^2*log(5)^7*log(625)^2 + 116307072*z^2*log(5)^5*log(625)^2 - 101972880*z^2*log(5)^3*log(625)^
3 + 55735776*z^2*log(5)^2*log(625)^4 + 29572992*z^2*log(5)^8*log(625)^2 + 6754464*z^2*log(5)^5*log(625)^3 - 59
93568*z^2*log(5)^6*log(625)^3 - 3483136*z^2*log(5)^9*log(625)^2 + 1233792*z^2*log(5)^3*log(625)^4 + 622080*z^2
*log(5)^7*log(625)^3 + 145152*z^2*log(5)^4*log(625)^4 - 33024*z^2*log(5)^11*log(625)^2 + 32256*z^2*log(5)^8*lo
g(625)^3 - 20736*z^2*log(5)^5*log(625)^4 + 10752*z^2*log(5)^10*log(625)^2 + 2048*z^2*log(5)^12*log(625)^2 - 89
5330080*z^2*log(5)^8*log(625) - 64822705034*z^2*log(5)^2*log(625) + 87868168964*z^2*log(5)*log(625) + 35361267
2*z^2*log(5)^9*log(625) - 110582624*z^2*log(5)^10*log(625) - 50188608*z^2*log(5)^7*log(625) - 49141728*z^2*log
(5)*log(625)^4 - 42206280*z^2*log(5)*log(625)^2 + 23227136*z^2*log(5)^11*log(625) - 2762752*z^2*log(5)^12*log(
625) + 280576*z^2*log(5)^13*log(625) - 16384*z^2*log(5)^14*log(625) + 3713381200*z^2*log(5)^5*log(625) - 35160
20928*z^2*log(5)^6*log(625) + 7344185168*z^2*log(5)^4*log(625) + 1396510560*z^2*log(5)^4*log(625)^2 - 50162611
328*z^2*log(5)^3*log(625) - 5122688120*z^2*log(5)^3*log(625)^2 + 12523800192*z^2*log(5)^5 - 3866129856*z^2*log
(5)^8 + 11799892736*z^2*log(5)^7 - 20116481088*z^2*log(5)^6 + 174542709464*z^2*log(5)^3 + 2364424192*z^2*log(5
)^9 + 10878270548*z^2*log(5)^4 - 178373890200*z^2*log(5)^2 - 9547849184*z^2*log(625)^2 + 827671536*z^2*log(625
)^3 - 2379615962*z^2*log(625) - 555588096*z^2*log(5)^10 + 65308800*z^2*log(5)^11 + 28952640*z^2*log(625)^4 + 1
6991680*z^2*log(5)^12 - 10534400*z^2*log(5)^13 - 2916000*z^2*log(625)^5 + 2150400*z^2*log(5)^14 - 264192*z^2*l
og(5)^15 + 16384*z^2*log(5)^16 + 1582709208*z^2*log(5) + 1411636820*z^2 + 2205604944*z*log(5)^4*log(625)^2 + 2
9199388648*z*log(5)^4*log(625) - 6021563364*z*log(5)^2*log(625)^2 + 6848432532*z*log(5)*log(625)^2 - 794356128
*z*log(5)^5*log(625)^2 + 10768621312*z*log(5)^3*log(625) - 1800735264*z*log(5)^7*log(625) - 197216172*z*log(5)
^2*log(625)^3 + 34038216*z*log(5)^3*log(625)^3 + 25612884*z*log(5)^4*log(625)^3 - 8005392*z*log(5)^2*log(625)^
4 - 5089536*z*log(5)^8*log(625)^2 + 4864752*z*log(5)^7*log(625)^2 + 4791672*z*log(5)^6*log(625)^2 + 3868848*z*
log(5)^5*log(625)^3 + 934416*z*log(5)^6*log(625)^3 - 308448*z*log(5)^3*log(625)^4 + 129024*z*log(5)^10*log(625
)^2 - 119808*z*log(5)^9*log(625)^2 - 102528*z*log(5)^7*log(625)^3 + 949389768*z*log(5)*log(625)^3 - 2228589816
8*z*log(5)^5*log(625) - 30871833629*z*log(5)^2*log(625) + 397443312*z*log(5)^8*log(625) + 8751051648*z*log(5)^
6*log(625) - 63067072*z*log(5)^9*log(625) + 23127324946*z*log(5)*log(625) + 21633872*z*log(5)^10*log(625) + 10
929168*z*log(5)*log(625)^4 - 5309056*z*log(5)^11*log(625) + 960512*z*log(5)^12*log(625) - 148480*z*log(5)^13*l
og(625) + 8192*z*log(5)^14*log(625) - 2580460164*z*log(5)^3*log(625)^2 - 5290987104*z*log(5)^8 + 116891477228*
z*log(5)^3 - 848443968*z*log(625)^3 - 812301408*z*log(625)^2 - 762456576*z*log(5)^7 + 561412672*z*log(5)^11 -
145936544*z*log(5)^12 - 6032039717*z*log(625) + 36031790828*z*log(5) + 29328640*z*log(5)^13 - 5927904*z*log(62
5)^4 - 4364288*z*log(5)^14 + 461824*z*log(5)^15 + 291600*z*log(625)^5 - 24576*z*log(5)^16 + 3720158976*z*log(5
)^9 + 16489887584*z*log(5)^6 - 15539807680*z*log(5)^5 - 110012275324*z*log(5)^2 - 61970024830*z*log(5)^4 - 171
7502720*z*log(5)^10 - 2117455230*z - 18749736*log(5)^6*log(625)^2 + 1558584*log(5)^3*log(625)^3 + 1486656*log(
5)^8*log(625)^2 - 1004148*log(5)^4*log(625)^3 + 944172*log(5)^2*log(625)^3 - 742320*log(5)^5*log(625)^3 - 5787
36*log(5)^7*log(625)^2 + 462672*log(5)^2*log(625)^4 - 133632*log(5)^9*log(625)^2 + 18144*log(5)^3*log(625)^4 -
10512*log(5)^6*log(625)^3 + 1152*log(5)^7*log(625)^3 + 26919575469*log(5)^2*log(625) - 28406414466*log(5)*log
(625) + 405742752*log(5)^7*log(625) - 71220168*log(5)*log(625)^3 - 27454320*log(5)^8*log(625) - 19915776*log(5
)^9*log(625) + 6597936*log(5)^10*log(625) - 1312128*log(5)^11*log(625) - 851472*log(5)*log(625)^4 + 129024*log
(5)^12*log(625) + 4018123944*log(5)^5*log(625) - 11729119392*log(5)^3*log(625) - 3124588788*log(5)*log(625)^2
- 3000186936*log(5)^4*log(625) + 1389857652*log(5)^2*log(625)^2 + 486397476*log(5)^3*log(625)^2 - 444909744*lo
g(5)^4*log(625)^2 - 1905774336*log(5)^6*log(625) + 172571616*log(5)^5*log(625)^2 - 80750825820*log(5)^3 + 3239
520224*log(5)^6 + 2781084960*log(5)^8 - 2775865856*log(5)^7 - 12951688156*log(5) + 2751420384*log(625)^2 + 797
69531076*log(5)^2 - 1696107136*log(5)^9 + 741724672*log(5)^10 + 2245952709*log(625) + 47747955498*log(5)^4 - 2
39597376*log(5)^11 + 106870752*log(625)^3 + 60284640*log(5)^12 - 11572992*log(5)^13 + 1652736*log(5)^14 + 6039
36*log(625)^4 - 164864*log(5)^15 - 11664*log(625)^5 + 8192*log(5)^16 - 12427123008*log(5)^5 + 705818410, z, k)
*(686118883212288*log(5) - 141893469512064*log(625) - root(12476089554*z^5*log(5)*log(625) - 4950250980*z^5*lo
g(5)^2*log(625)^2 + 484358724*z^5*log(5)^4*log(625)^3 - 239636880*z^5*log(5)^2*log(625)^4 - 94885776*z^5*log(5
)^5*log(625)^3 + 88216560*z^5*log(5)^7*log(625)^2 - 54064008*z^5*log(5)^6*log(625)^2 - 25406208*z^5*log(5)^8*l
og(625)^2 + 19994256*z^5*log(5)^6*log(625)^3 + 19789920*z^5*log(5)^3*log(625)^4 + 8000000*z^5*log(5)^9*log(625
)^2 - 4233600*z^5*log(5)^7*log(625)^3 - 3421440*z^5*log(5)^4*log(625)^4 + 559872*z^5*log(5)^5*log(625)^4 - 450
048*z^5*log(5)^10*log(625)^2 + 179712*z^5*log(5)^8*log(625)^3 - 33024*z^5*log(5)^11*log(625)^2 + 2048*z^5*log(
5)^12*log(625)^2 + 1215973440*z^5*log(5)^6*log(625) + 9497495360*z^5*log(5)^3*log(625) - 855600912*z^5*log(5)^
8*log(625) + 13353194984*z^5*log(5)^5*log(625) - 184310640*z^5*log(5)*log(625)^4 - 2876069088*z^5*log(5)^5*log
(625)^2 + 160323520*z^5*log(5)^9*log(625) - 2728181808*z^5*log(5)^4*log(625)^2 - 30926256*z^5*log(5)^10*log(62
5) + 990592*z^5*log(5)^11*log(625) - 364544*z^5*log(5)^12*log(625) + 132096*z^5*log(5)^13*log(625) - 8192*z^5*
log(5)^14*log(625) - 11135933108*z^5*log(5)^3*log(625)^2 + 2104890516*z^5*log(5)^2*log(625)^3 - 3271912237*z^5
*log(5)^2*log(625) + 3105872352*z^5*log(5)^7*log(625) + 1183695336*z^5*log(5)^3*log(625)^3 - 2672150172*z^5*lo
g(5)*log(625)^2 + 2581668072*z^5*log(5)*log(625)^3 + 11029505352*z^5*log(5)^4*log(625) - 37976590196*z^5*log(5
)^3 - 7612365760*z^5*log(5)^5 - 11759677728*z^5*log(5)^6 + 19970762026*z^5*log(5)^4 - 2609404160*z^5*log(5)^7
- 1227877888*z^5*log(5)^9 + 1212381648*z^5*log(625)^3 + 31218036596*z^5*log(5)^2 + 7000018859*z^5*log(625) + 7
22077440*z^5*log(5)^10 - 553335264*z^5*log(5)^8 - 489522528*z^5*log(625)^4 - 31967952756*z^5*log(5) - 23114028
8*z^5*log(5)^11 - 4434737216*z^5*log(625)^2 + 58274528*z^5*log(5)^12 + 36450000*z^5*log(625)^5 - 9070336*z^5*l
og(5)^13 + 1091584*z^5*log(5)^14 - 132096*z^5*log(5)^15 + 8192*z^5*log(5)^16 + 705818410*z^5 + 4925603232*z^4*
log(5)^5*log(625)^2 + 2112984720*z^4*log(5)^8*log(625) - 507883176*z^4*log(5)^3*log(625)^3 - 422627760*z^4*log
(5)^7*log(625)^2 + 385436880*z^4*log(5)^2*log(625)^4 + 219805776*z^4*log(5)^4*log(625)^2 + 203656464*z^4*log(5
)^5*log(625)^3 - 10394524512*z^4*log(5)^7*log(625) + 103641408*z^4*log(5)^8*log(625)^2 - 38158992*z^4*log(5)^6
*log(625)^3 - 21893120*z^4*log(5)^9*log(625)^2 - 19789920*z^4*log(5)^3*log(625)^4 + 6473088*z^4*log(5)^7*log(6
25)^3 + 3421440*z^4*log(5)^4*log(625)^4 + 1168896*z^4*log(5)^10*log(625)^2 - 559872*z^4*log(5)^5*log(625)^4 -
179712*z^4*log(5)^8*log(625)^3 + 33024*z^4*log(5)^11*log(625)^2 - 2048*z^4*log(5)^12*log(625)^2 + 23951396350*
z^4*log(5)*log(625) - 7484890188*z^4*log(5)^2*log(625)^2 - 34728028771*z^4*log(5)^2*log(625) + 15901362260*z^4
*log(5)^3*log(625)^2 + 17457193960*z^4*log(5)^4*log(625) - 2963843028*z^4*log(5)^2*log(625)^3 - 268816256*z^4*
log(5)^9*log(625) - 107289360*z^4*log(5)*log(625)^4 + 21409328*z^4*log(5)^10*log(625) + 14069592*z^4*log(5)*lo
g(625)^3 + 6691456*z^4*log(5)^11*log(625) - 280576*z^4*log(5)^13*log(625) + 274432*z^4*log(5)^12*log(625) + 16
384*z^4*log(5)^14*log(625) + 8491244604*z^4*log(5)*log(625)^2 - 3958773472*z^4*log(5)^3*log(625) - 33945822712
*z^4*log(5)^5*log(625) + 7771370688*z^4*log(5)^6*log(625) - 1323311364*z^4*log(5)^4*log(625)^3 + 1116327384*z^
4*log(5)^6*log(625)^2 + 235978643332*z^4*log(5)^3 + 28864119904*z^4*log(5)^6 - 3055040512*z^4*log(5)^10 + 2955
326208*z^4*log(5)^7 - 21705874987*z^4*log(625) - 2878871760*z^4*log(625)^3 + 98727131908*z^4*log(5) - 22152592
0812*z^4*log(5)^2 - 2362697568*z^4*log(5)^8 - 83946835838*z^4*log(5)^4 - 19328727360*z^4*log(5)^5 + 6343178880
*z^4*log(5)^9 + 5951283584*z^4*log(625)^2 + 922185408*z^4*log(5)^11 + 635322528*z^4*log(625)^4 - 210576544*z^4
*log(5)^12 - 36450000*z^4*log(625)^5 + 31544576*z^4*log(5)^13 - 3803136*z^4*log(5)^14 + 429056*z^4*log(5)^15 -
24576*z^4*log(5)^16 - 2117455230*z^4 - 5056253112*z^3*log(5)^2*log(625)^2 + 36590909904*z^3*log(5)^5*log(625)
- 519193008*z^3*log(5)^3*log(625)^3 + 472670496*z^3*log(5)^7*log(625)^2 - 199633248*z^3*log(5)^2*log(625)^4 -
4476161224*z^3*log(5)^3*log(625)^2 - 104205312*z^3*log(5)^8*log(625)^2 - 102726432*z^3*log(5)^5*log(625)^3 +
20580192*z^3*log(5)^6*log(625)^3 + 17629696*z^3*log(5)^9*log(625)^2 - 2760192*z^3*log(5)^7*log(625)^3 + 137894
4*z^3*log(5)^3*log(625)^4 - 1140480*z^3*log(5)^4*log(625)^4 - 858624*z^3*log(5)^10*log(625)^2 + 186624*z^3*log
(5)^5*log(625)^4 + 33024*z^3*log(5)^11*log(625)^2 - 32256*z^3*log(5)^8*log(625)^3 - 2048*z^3*log(5)^12*log(625
)^2 - 119016565348*z^3*log(5)*log(625) - 48652877872*z^3*log(5)^4*log(625) - 1402357680*z^3*log(5)*log(625)^3
- 9500731896*z^3*log(5)*log(625)^2 - 774510048*z^3*log(5)^8*log(625) + 8988637248*z^3*log(5)^7*log(625) - 1621
37088*z^3*log(5)^9*log(625) + 99250272*z^3*log(5)*log(625)^4 + 91867744*z^3*log(5)^10*log(625) - 12911143104*z
^3*log(5)^6*log(625) - 24288000*z^3*log(5)^11*log(625) + 1763328*z^3*log(5)^12*log(625) + 16384*z^3*log(5)^13*
log(625) + 2503084824*z^3*log(5)^2*log(625)^3 + 106774904202*z^3*log(5)^2*log(625) + 46433734080*z^3*log(5)^3*
log(625) - 1875765744*z^3*log(5)^6*log(625)^2 - 1321103232*z^3*log(5)^5*log(625)^2 - 1190288160*z^3*log(5)^4*l
og(625)^2 + 1016363880*z^3*log(5)^4*log(625)^3 - 91421991032*z^3*log(5) + 3864329216*z^3*log(5)^10 + 398924518
664*z^3*log(5)^2 - 8012949760*z^3*log(5)^7 + 20871559098*z^3*log(625) + 66470526036*z^3*log(5)^4 + 32064662912
*z^3*log(5)^5 + 6092183840*z^3*log(625)^2 + 1580391792*z^3*log(625)^3 - 1078169216*z^3*log(5)^11 - 18161258048
*z^3*log(5)^6 - 9461309696*z^3*log(5)^9 - 408685414008*z^3*log(5)^3 + 9037260864*z^3*log(5)^8 + 220962240*z^3*
log(5)^12 - 172746432*z^3*log(625)^4 - 29695488*z^3*log(5)^13 + 14580000*z^3*log(625)^5 + 3272704*z^3*log(5)^1
4 - 329728*z^3*log(5)^15 + 16384*z^3*log(5)^16 + 1411636820*z^3 + 731908944*z^2*log(5)^6*log(625)^2 - 20184654
24*z^2*log(5)*log(625)^3 + 343730088*z^2*log(5)^2*log(625)^3 + 21804595032*z^2*log(5)^2*log(625)^2 - 239178888
*z^2*log(5)^4*log(625)^3 - 126620064*z^2*log(5)^7*log(625)^2 + 116307072*z^2*log(5)^5*log(625)^2 - 101972880*z
^2*log(5)^3*log(625)^3 + 55735776*z^2*log(5)^2*log(625)^4 + 29572992*z^2*log(5)^8*log(625)^2 + 6754464*z^2*log
(5)^5*log(625)^3 - 5993568*z^2*log(5)^6*log(625)^3 - 3483136*z^2*log(5)^9*log(625)^2 + 1233792*z^2*log(5)^3*lo
g(625)^4 + 622080*z^2*log(5)^7*log(625)^3 + 145152*z^2*log(5)^4*log(625)^4 - 33024*z^2*log(5)^11*log(625)^2 +
32256*z^2*log(5)^8*log(625)^3 - 20736*z^2*log(5)^5*log(625)^4 + 10752*z^2*log(5)^10*log(625)^2 + 2048*z^2*log(
5)^12*log(625)^2 - 895330080*z^2*log(5)^8*log(625) - 64822705034*z^2*log(5)^2*log(625) + 87868168964*z^2*log(5
)*log(625) + 353612672*z^2*log(5)^9*log(625) - 110582624*z^2*log(5)^10*log(625) - 50188608*z^2*log(5)^7*log(62
5) - 49141728*z^2*log(5)*log(625)^4 - 42206280*z^2*log(5)*log(625)^2 + 23227136*z^2*log(5)^11*log(625) - 27627
52*z^2*log(5)^12*log(625) + 280576*z^2*log(5)^13*log(625) - 16384*z^2*log(5)^14*log(625) + 3713381200*z^2*log(
5)^5*log(625) - 3516020928*z^2*log(5)^6*log(625) + 7344185168*z^2*log(5)^4*log(625) + 1396510560*z^2*log(5)^4*
log(625)^2 - 50162611328*z^2*log(5)^3*log(625) - 5122688120*z^2*log(5)^3*log(625)^2 + 12523800192*z^2*log(5)^5
- 3866129856*z^2*log(5)^8 + 11799892736*z^2*log(5)^7 - 20116481088*z^2*log(5)^6 + 174542709464*z^2*log(5)^3 +
2364424192*z^2*log(5)^9 + 10878270548*z^2*log(5)^4 - 178373890200*z^2*log(5)^2 - 9547849184*z^2*log(625)^2 +
827671536*z^2*log(625)^3 - 2379615962*z^2*log(625) - 555588096*z^2*log(5)^10 + 65308800*z^2*log(5)^11 + 289526
40*z^2*log(625)^4 + 16991680*z^2*log(5)^12 - 10534400*z^2*log(5)^13 - 2916000*z^2*log(625)^5 + 2150400*z^2*log
(5)^14 - 264192*z^2*log(5)^15 + 16384*z^2*log(5)^16 + 1582709208*z^2*log(5) + 1411636820*z^2 + 2205604944*z*lo
g(5)^4*log(625)^2 + 29199388648*z*log(5)^4*log(625) - 6021563364*z*log(5)^2*log(625)^2 + 6848432532*z*log(5)*l
og(625)^2 - 794356128*z*log(5)^5*log(625)^2 + 10768621312*z*log(5)^3*log(625) - 1800735264*z*log(5)^7*log(625)
- 197216172*z*log(5)^2*log(625)^3 + 34038216*z*log(5)^3*log(625)^3 + 25612884*z*log(5)^4*log(625)^3 - 8005392
*z*log(5)^2*log(625)^4 - 5089536*z*log(5)^8*log(625)^2 + 4864752*z*log(5)^7*log(625)^2 + 4791672*z*log(5)^6*lo
g(625)^2 + 3868848*z*log(5)^5*log(625)^3 + 934416*z*log(5)^6*log(625)^3 - 308448*z*log(5)^3*log(625)^4 + 12902
4*z*log(5)^10*log(625)^2 - 119808*z*log(5)^9*log(625)^2 - 102528*z*log(5)^7*log(625)^3 + 949389768*z*log(5)*lo
g(625)^3 - 22285898168*z*log(5)^5*log(625) - 30871833629*z*log(5)^2*log(625) + 397443312*z*log(5)^8*log(625) +
8751051648*z*log(5)^6*log(625) - 63067072*z*log(5)^9*log(625) + 23127324946*z*log(5)*log(625) + 21633872*z*lo
g(5)^10*log(625) + 10929168*z*log(5)*log(625)^4 - 5309056*z*log(5)^11*log(625) + 960512*z*log(5)^12*log(625) -
148480*z*log(5)^13*log(625) + 8192*z*log(5)^14*log(625) - 2580460164*z*log(5)^3*log(625)^2 - 5290987104*z*log
(5)^8 + 116891477228*z*log(5)^3 - 848443968*z*log(625)^3 - 812301408*z*log(625)^2 - 762456576*z*log(5)^7 + 561
412672*z*log(5)^11 - 145936544*z*log(5)^12 - 6032039717*z*log(625) + 36031790828*z*log(5) + 29328640*z*log(5)^
13 - 5927904*z*log(625)^4 - 4364288*z*log(5)^14 + 461824*z*log(5)^15 + 291600*z*log(625)^5 - 24576*z*log(5)^16
+ 3720158976*z*log(5)^9 + 16489887584*z*log(5)^6 - 15539807680*z*log(5)^5 - 110012275324*z*log(5)^2 - 6197002
4830*z*log(5)^4 - 1717502720*z*log(5)^10 - 2117455230*z - 18749736*log(5)^6*log(625)^2 + 1558584*log(5)^3*log(
625)^3 + 1486656*log(5)^8*log(625)^2 - 1004148*log(5)^4*log(625)^3 + 944172*log(5)^2*log(625)^3 - 742320*log(5
)^5*log(625)^3 - 578736*log(5)^7*log(625)^2 + 462672*log(5)^2*log(625)^4 - 133632*log(5)^9*log(625)^2 + 18144*
log(5)^3*log(625)^4 - 10512*log(5)^6*log(625)^3 + 1152*log(5)^7*log(625)^3 + 26919575469*log(5)^2*log(625) - 2
8406414466*log(5)*log(625) + 405742752*log(5)^7*log(625) - 71220168*log(5)*log(625)^3 - 27454320*log(5)^8*log(
625) - 19915776*log(5)^9*log(625) + 6597936*log(5)^10*log(625) - 1312128*log(5)^11*log(625) - 851472*log(5)*lo
g(625)^4 + 129024*log(5)^12*log(625) + 4018123944*log(5)^5*log(625) - 11729119392*log(5)^3*log(625) - 31245887
88*log(5)*log(625)^2 - 3000186936*log(5)^4*log(625) + 1389857652*log(5)^2*log(625)^2 + 486397476*log(5)^3*log(
625)^2 - 444909744*log(5)^4*log(625)^2 - 1905774336*log(5)^6*log(625) + 172571616*log(5)^5*log(625)^2 - 807508
25820*log(5)^3 + 3239520224*log(5)^6 + 2781084960*log(5)^8 - 2775865856*log(5)^7 - 12951688156*log(5) + 275142
0384*log(625)^2 + 79769531076*log(5)^2 - 1696107136*log(5)^9 + 741724672*log(5)^10 + 2245952709*log(625) + 477
47955498*log(5)^4 - 239597376*log(5)^11 + 106870752*log(625)^3 + 60284640*log(5)^12 - 11572992*log(5)^13 + 165
2736*log(5)^14 + 603936*log(625)^4 - 164864*log(5)^15 - 11664*log(625)^5 + 8192*log(5)^16 - 12427123008*log(5)
^5 + 705818410, z, k)*(178106869611072*log(625) - 900954471988224*log(5) - 1408625002440576*log(5)*log(625) +
root(12476089554*z^5*log(5)*log(625) - 4950250980*z^5*log(5)^2*log(625)^2 + 484358724*z^5*log(5)^4*log(625)^3
- 239636880*z^5*log(5)^2*log(625)^4 - 94885776*z^5*log(5)^5*log(625)^3 + 88216560*z^5*log(5)^7*log(625)^2 - 54
064008*z^5*log(5)^6*log(625)^2 - 25406208*z^5*log(5)^8*log(625)^2 + 19994256*z^5*log(5)^6*log(625)^3 + 1978992
0*z^5*log(5)^3*log(625)^4 + 8000000*z^5*log(5)^9*log(625)^2 - 4233600*z^5*log(5)^7*log(625)^3 - 3421440*z^5*lo
g(5)^4*log(625)^4 + 559872*z^5*log(5)^5*log(625)^4 - 450048*z^5*log(5)^10*log(625)^2 + 179712*z^5*log(5)^8*log
(625)^3 - 33024*z^5*log(5)^11*log(625)^2 + 2048*z^5*log(5)^12*log(625)^2 + 1215973440*z^5*log(5)^6*log(625) +
9497495360*z^5*log(5)^3*log(625) - 855600912*z^5*log(5)^8*log(625) + 13353194984*z^5*log(5)^5*log(625) - 18431
0640*z^5*log(5)*log(625)^4 - 2876069088*z^5*log(5)^5*log(625)^2 + 160323520*z^5*log(5)^9*log(625) - 2728181808
*z^5*log(5)^4*log(625)^2 - 30926256*z^5*log(5)^10*log(625) + 990592*z^5*log(5)^11*log(625) - 364544*z^5*log(5)
^12*log(625) + 132096*z^5*log(5)^13*log(625) - 8192*z^5*log(5)^14*log(625) - 11135933108*z^5*log(5)^3*log(625)
^2 + 2104890516*z^5*log(5)^2*log(625)^3 - 3271912237*z^5*log(5)^2*log(625) + 3105872352*z^5*log(5)^7*log(625)
+ 1183695336*z^5*log(5)^3*log(625)^3 - 2672150172*z^5*log(5)*log(625)^2 + 2581668072*z^5*log(5)*log(625)^3 + 1
1029505352*z^5*log(5)^4*log(625) - 37976590196*z^5*log(5)^3 - 7612365760*z^5*log(5)^5 - 11759677728*z^5*log(5)
^6 + 19970762026*z^5*log(5)^4 - 2609404160*z^5*log(5)^7 - 1227877888*z^5*log(5)^9 + 1212381648*z^5*log(625)^3
+ 31218036596*z^5*log(5)^2 + 7000018859*z^5*log(625) + 722077440*z^5*log(5)^10 - 553335264*z^5*log(5)^8 - 4895
22528*z^5*log(625)^4 - 31967952756*z^5*log(5) - 231140288*z^5*log(5)^11 - 4434737216*z^5*log(625)^2 + 58274528
*z^5*log(5)^12 + 36450000*z^5*log(625)^5 - 9070336*z^5*log(5)^13 + 1091584*z^5*log(5)^14 - 132096*z^5*log(5)^1
5 + 8192*z^5*log(5)^16 + 705818410*z^5 + 4925603232*z^4*log(5)^5*log(625)^2 + 2112984720*z^4*log(5)^8*log(625)
- 507883176*z^4*log(5)^3*log(625)^3 - 422627760*z^4*log(5)^7*log(625)^2 + 385436880*z^4*log(5)^2*log(625)^4 +
219805776*z^4*log(5)^4*log(625)^2 + 203656464*z^4*log(5)^5*log(625)^3 - 10394524512*z^4*log(5)^7*log(625) + 1
03641408*z^4*log(5)^8*log(625)^2 - 38158992*z^4*log(5)^6*log(625)^3 - 21893120*z^4*log(5)^9*log(625)^2 - 19789
920*z^4*log(5)^3*log(625)^4 + 6473088*z^4*log(5)^7*log(625)^3 + 3421440*z^4*log(5)^4*log(625)^4 + 1168896*z^4*
log(5)^10*log(625)^2 - 559872*z^4*log(5)^5*log(625)^4 - 179712*z^4*log(5)^8*log(625)^3 + 33024*z^4*log(5)^11*l
og(625)^2 - 2048*z^4*log(5)^12*log(625)^2 + 23951396350*z^4*log(5)*log(625) - 7484890188*z^4*log(5)^2*log(625)
^2 - 34728028771*z^4*log(5)^2*log(625) + 15901362260*z^4*log(5)^3*log(625)^2 + 17457193960*z^4*log(5)^4*log(62
5) - 2963843028*z^4*log(5)^2*log(625)^3 - 268816256*z^4*log(5)^9*log(625) - 107289360*z^4*log(5)*log(625)^4 +
21409328*z^4*log(5)^10*log(625) + 14069592*z^4*log(5)*log(625)^3 + 6691456*z^4*log(5)^11*log(625) - 280576*z^4
*log(5)^13*log(625) + 274432*z^4*log(5)^12*log(625) + 16384*z^4*log(5)^14*log(625) + 8491244604*z^4*log(5)*log
(625)^2 - 3958773472*z^4*log(5)^3*log(625) - 33945822712*z^4*log(5)^5*log(625) + 7771370688*z^4*log(5)^6*log(6
25) - 1323311364*z^4*log(5)^4*log(625)^3 + 1116327384*z^4*log(5)^6*log(625)^2 + 235978643332*z^4*log(5)^3 + 28
864119904*z^4*log(5)^6 - 3055040512*z^4*log(5)^10 + 2955326208*z^4*log(5)^7 - 21705874987*z^4*log(625) - 28788
71760*z^4*log(625)^3 + 98727131908*z^4*log(5) - 221525920812*z^4*log(5)^2 - 2362697568*z^4*log(5)^8 - 83946835
838*z^4*log(5)^4 - 19328727360*z^4*log(5)^5 + 6343178880*z^4*log(5)^9 + 5951283584*z^4*log(625)^2 + 922185408*
z^4*log(5)^11 + 635322528*z^4*log(625)^4 - 210576544*z^4*log(5)^12 - 36450000*z^4*log(625)^5 + 31544576*z^4*lo
g(5)^13 - 3803136*z^4*log(5)^14 + 429056*z^4*log(5)^15 - 24576*z^4*log(5)^16 - 2117455230*z^4 - 5056253112*z^3
*log(5)^2*log(625)^2 + 36590909904*z^3*log(5)^5*log(625) - 519193008*z^3*log(5)^3*log(625)^3 + 472670496*z^3*l
og(5)^7*log(625)^2 - 199633248*z^3*log(5)^2*log(625)^4 - 4476161224*z^3*log(5)^3*log(625)^2 - 104205312*z^3*lo
g(5)^8*log(625)^2 - 102726432*z^3*log(5)^5*log(625)^3 + 20580192*z^3*log(5)^6*log(625)^3 + 17629696*z^3*log(5)
^9*log(625)^2 - 2760192*z^3*log(5)^7*log(625)^3 + 1378944*z^3*log(5)^3*log(625)^4 - 1140480*z^3*log(5)^4*log(6
25)^4 - 858624*z^3*log(5)^10*log(625)^2 + 186624*z^3*log(5)^5*log(625)^4 + 33024*z^3*log(5)^11*log(625)^2 - 32
256*z^3*log(5)^8*log(625)^3 - 2048*z^3*log(5)^12*log(625)^2 - 119016565348*z^3*log(5)*log(625) - 48652877872*z
^3*log(5)^4*log(625) - 1402357680*z^3*log(5)*log(625)^3 - 9500731896*z^3*log(5)*log(625)^2 - 774510048*z^3*log
(5)^8*log(625) + 8988637248*z^3*log(5)^7*log(625) - 162137088*z^3*log(5)^9*log(625) + 99250272*z^3*log(5)*log(
625)^4 + 91867744*z^3*log(5)^10*log(625) - 12911143104*z^3*log(5)^6*log(625) - 24288000*z^3*log(5)^11*log(625)
+ 1763328*z^3*log(5)^12*log(625) + 16384*z^3*log(5)^13*log(625) + 2503084824*z^3*log(5)^2*log(625)^3 + 106774
904202*z^3*log(5)^2*log(625) + 46433734080*z^3*log(5)^3*log(625) - 1875765744*z^3*log(5)^6*log(625)^2 - 132110
3232*z^3*log(5)^5*log(625)^2 - 1190288160*z^3*log(5)^4*log(625)^2 + 1016363880*z^3*log(5)^4*log(625)^3 - 91421
991032*z^3*log(5) + 3864329216*z^3*log(5)^10 + 398924518664*z^3*log(5)^2 - 8012949760*z^3*log(5)^7 + 208715590
98*z^3*log(625) + 66470526036*z^3*log(5)^4 + 32064662912*z^3*log(5)^5 + 6092183840*z^3*log(625)^2 + 1580391792
*z^3*log(625)^3 - 1078169216*z^3*log(5)^11 - 18161258048*z^3*log(5)^6 - 9461309696*z^3*log(5)^9 - 408685414008
*z^3*log(5)^3 + 9037260864*z^3*log(5)^8 + 220962240*z^3*log(5)^12 - 172746432*z^3*log(625)^4 - 29695488*z^3*lo
g(5)^13 + 14580000*z^3*log(625)^5 + 3272704*z^3*log(5)^14 - 329728*z^3*log(5)^15 + 16384*z^3*log(5)^16 + 14116
36820*z^3 + 731908944*z^2*log(5)^6*log(625)^2 - 2018465424*z^2*log(5)*log(625)^3 + 343730088*z^2*log(5)^2*log(
625)^3 + 21804595032*z^2*log(5)^2*log(625)^2 - 239178888*z^2*log(5)^4*log(625)^3 - 126620064*z^2*log(5)^7*log(
625)^2 + 116307072*z^2*log(5)^5*log(625)^2 - 101972880*z^2*log(5)^3*log(625)^3 + 55735776*z^2*log(5)^2*log(625
)^4 + 29572992*z^2*log(5)^8*log(625)^2 + 6754464*z^2*log(5)^5*log(625)^3 - 5993568*z^2*log(5)^6*log(625)^3 - 3
483136*z^2*log(5)^9*log(625)^2 + 1233792*z^2*log(5)^3*log(625)^4 + 622080*z^2*log(5)^7*log(625)^3 + 145152*z^2
*log(5)^4*log(625)^4 - 33024*z^2*log(5)^11*log(625)^2 + 32256*z^2*log(5)^8*log(625)^3 - 20736*z^2*log(5)^5*log
(625)^4 + 10752*z^2*log(5)^10*log(625)^2 + 2048*z^2*log(5)^12*log(625)^2 - 895330080*z^2*log(5)^8*log(625) - 6
4822705034*z^2*log(5)^2*log(625) + 87868168964*z^2*log(5)*log(625) + 353612672*z^2*log(5)^9*log(625) - 1105826
24*z^2*log(5)^10*log(625) - 50188608*z^2*log(5)^7*log(625) - 49141728*z^2*log(5)*log(625)^4 - 42206280*z^2*log
(5)*log(625)^2 + 23227136*z^2*log(5)^11*log(625) - 2762752*z^2*log(5)^12*log(625) + 280576*z^2*log(5)^13*log(6
25) - 16384*z^2*log(5)^14*log(625) + 3713381200*z^2*log(5)^5*log(625) - 3516020928*z^2*log(5)^6*log(625) + 734
4185168*z^2*log(5)^4*log(625) + 1396510560*z^2*log(5)^4*log(625)^2 - 50162611328*z^2*log(5)^3*log(625) - 51226
88120*z^2*log(5)^3*log(625)^2 + 12523800192*z^2*log(5)^5 - 3866129856*z^2*log(5)^8 + 11799892736*z^2*log(5)^7
- 20116481088*z^2*log(5)^6 + 174542709464*z^2*log(5)^3 + 2364424192*z^2*log(5)^9 + 10878270548*z^2*log(5)^4 -
178373890200*z^2*log(5)^2 - 9547849184*z^2*log(625)^2 + 827671536*z^2*log(625)^3 - 2379615962*z^2*log(625) - 5
55588096*z^2*log(5)^10 + 65308800*z^2*log(5)^11 + 28952640*z^2*log(625)^4 + 16991680*z^2*log(5)^12 - 10534400*
z^2*log(5)^13 - 2916000*z^2*log(625)^5 + 2150400*z^2*log(5)^14 - 264192*z^2*log(5)^15 + 16384*z^2*log(5)^16 +
1582709208*z^2*log(5) + 1411636820*z^2 + 2205604944*z*log(5)^4*log(625)^2 + 29199388648*z*log(5)^4*log(625) -
6021563364*z*log(5)^2*log(625)^2 + 6848432532*z*log(5)*log(625)^2 - 794356128*z*log(5)^5*log(625)^2 + 10768621
312*z*log(5)^3*log(625) - 1800735264*z*log(5)^7*log(625) - 197216172*z*log(5)^2*log(625)^3 + 34038216*z*log(5)
^3*log(625)^3 + 25612884*z*log(5)^4*log(625)^3 - 8005392*z*log(5)^2*log(625)^4 - 5089536*z*log(5)^8*log(625)^2
+ 4864752*z*log(5)^7*log(625)^2 + 4791672*z*log(5)^6*log(625)^2 + 3868848*z*log(5)^5*log(625)^3 + 934416*z*lo
g(5)^6*log(625)^3 - 308448*z*log(5)^3*log(625)^4 + 129024*z*log(5)^10*log(625)^2 - 119808*z*log(5)^9*log(625)^
2 - 102528*z*log(5)^7*log(625)^3 + 949389768*z*log(5)*log(625)^3 - 22285898168*z*log(5)^5*log(625) - 308718336
29*z*log(5)^2*log(625) + 397443312*z*log(5)^8*log(625) + 8751051648*z*log(5)^6*log(625) - 63067072*z*log(5)^9*
log(625) + 23127324946*z*log(5)*log(625) + 21633872*z*log(5)^10*log(625) + 10929168*z*log(5)*log(625)^4 - 5309
056*z*log(5)^11*log(625) + 960512*z*log(5)^12*log(625) - 148480*z*log(5)^13*log(625) + 8192*z*log(5)^14*log(62
5) - 2580460164*z*log(5)^3*log(625)^2 - 5290987104*z*log(5)^8 + 116891477228*z*log(5)^3 - 848443968*z*log(625)
^3 - 812301408*z*log(625)^2 - 762456576*z*log(5)^7 + 561412672*z*log(5)^11 - 145936544*z*log(5)^12 - 603203971
7*z*log(625) + 36031790828*z*log(5) + 29328640*z*log(5)^13 - 5927904*z*log(625)^4 - 4364288*z*log(5)^14 + 4618
24*z*log(5)^15 + 291600*z*log(625)^5 - 24576*z*log(5)^16 + 3720158976*z*log(5)^9 + 16489887584*z*log(5)^6 - 15
539807680*z*log(5)^5 - 110012275324*z*log(5)^2 - 61970024830*z*log(5)^4 - 1717502720*z*log(5)^10 - 2117455230*
z - 18749736*log(5)^6*log(625)^2 + 1558584*log(5)^3*log(625)^3 + 1486656*log(5)^8*log(625)^2 - 1004148*log(5)^
4*log(625)^3 + 944172*log(5)^2*log(625)^3 - 742320*log(5)^5*log(625)^3 - 578736*log(5)^7*log(625)^2 + 462672*l
og(5)^2*log(625)^4 - 133632*log(5)^9*log(625)^2 + 18144*log(5)^3*log(625)^4 - 10512*log(5)^6*log(625)^3 + 1152
*log(5)^7*log(625)^3 + 26919575469*log(5)^2*log(625) - 28406414466*log(5)*log(625) + 405742752*log(5)^7*log(62
5) - 71220168*log(5)*log(625)^3 - 27454320*log(5)^8*log(625) - 19915776*log(5)^9*log(625) + 6597936*log(5)^10*
log(625) - 1312128*log(5)^11*log(625) - 851472*log(5)*log(625)^4 + 129024*log(5)^12*log(625) + 4018123944*log(
5)^5*log(625) - 11729119392*log(5)^3*log(625) - 3124588788*log(5)*log(625)^2 - 3000186936*log(5)^4*log(625) +
1389857652*log(5)^2*log(625)^2 + 486397476*log(5)^3*log(625)^2 - 444909744*log(5)^4*log(625)^2 - 1905774336*lo
g(5)^6*log(625) + 172571616*log(5)^5*log(625)^2 - 80750825820*log(5)^3 + 3239520224*log(5)^6 + 2781084960*log(
5)^8 - 2775865856*log(5)^7 - 12951688156*log(5) + 2751420384*log(625)^2 + 79769531076*log(5)^2 - 1696107136*lo
g(5)^9 + 741724672*log(5)^10 + 2245952709*log(625) + 47747955498*log(5)^4 - 239597376*log(5)^11 + 106870752*lo
g(625)^3 + 60284640*log(5)^12 - 11572992*log(5)^13 + 1652736*log(5)^14 + 603936*log(625)^4 - 164864*log(5)^15
- 11664*log(625)^5 + 8192*log(5)^16 - 12427123008*log(5)^5 + 705818410, z, k)*(697813186097664*log(5) - 143478
359508672*log(625) + 52996689341568*log(5)*log(625) - 101661524307648*log(5)*log(625)^2 + 222628838354496*log(
5)^2*log(625) - 17640099855360*log(5)*log(625)^3 - 443746729427328*log(5)^3*log(625) - 16002479294208*log(5)*l
og(625)^4 + 160171750104192*log(5)^4*log(625) - 30869364332160*log(5)^5*log(625) + 231025366809216*log(5)^6*lo
g(625) - 334197782551296*log(5)^7*log(625) + 223157372779008*log(5)^8*log(625) - 73422787571712*log(5)^9*log(6
25) + 17637100061184*log(5)^10*log(625) - 4819443121152*log(5)^11*log(625) + 981083860992*log(5)^12*log(625) -
192846790656*log(5)^13*log(625) + 29668737024*log(5)^14*log(625) - 1719926784*log(5)^15*log(625) + x*(2293321
41860544*log(625) - 1077699755990016*log(5) + 71511089511168*log(5)*log(625) + 83049530470272*log(5)*log(625)^
2 - 223391603348352*log(5)^2*log(625) + 45907407279360*log(5)*log(625)^3 + 565129647937152*log(5)^3*log(625) +
14701262303232*log(5)*log(625)^4 - 86229234054720*log(5)^4*log(625) + 224520576278400*log(5)^5*log(625) - 197
906480451072*log(5)^6*log(625) + 414387001156608*log(5)^7*log(625) - 308873410942464*log(5)^8*log(625) + 13660
0224353280*log(5)^9*log(625) - 36049146951168*log(5)^10*log(625) + 7699241051136*log(5)^11*log(625) - 18228850
05312*log(5)^12*log(625) + 362644770816*log(5)^13*log(625) - 72953561088*log(5)^14*log(625) + 10606215168*log(
5)^15*log(625) - 573308928*log(5)^16*log(625) + 2363481653993856*log(5)^2 - 3648543795111168*log(5)^3 + 369279
4321952640*log(5)^4 - 2735385496966656*log(5)^5 + 991688970692736*log(5)^6 - 17106158327040*log(5)^7 - 3008417
88441600*log(5)^8 + 62120409643008*log(5)^9 + 101735035361280*log(5)^10 - 98534511396864*log(5)^11 + 445922125
24032*log(5)^12 - 13838562256896*log(5)^13 + 3378106404864*log(5)^14 - 629546950656*log(5)^15 + 94165991424*lo
g(5)^16 - 10606215168*log(5)^17 + 573308928*log(5)^18 - 133238909069568*log(625)^2 + 33351502536576*log(625)^3
- 14530747686912*log(625)^4 + 510183360000*log(625)^5 - 219864177121536*log(5)^2*log(625)^2 - 7016525296128*l
og(5)^2*log(625)^3 - 172197890243712*log(5)^3*log(625)^2 - 20372505882624*log(5)^2*log(625)^4 + 25461218322432
*log(5)^3*log(625)^3 + 229658505666048*log(5)^4*log(625)^2 + 9581833046016*log(5)^3*log(625)^4 + 3101169835123
2*log(5)^4*log(625)^3 - 329257955192832*log(5)^5*log(625)^2 - 2807323619328*log(5)^4*log(625)^4 - 280508183585
28*log(5)^5*log(625)^3 + 144340285112064*log(5)^6*log(625)^2 + 343931609088*log(5)^5*log(625)^4 + 126065325680
64*log(5)^6*log(625)^3 - 25971613314048*log(5)^7*log(625)^2 - 2728072617984*log(5)^7*log(625)^3 - 709030410854
4*log(5)^8*log(625)^2 + 363401717760*log(5)^8*log(625)^3 + 3688795054080*log(5)^9*log(625)^2 - 64577875968*log
(5)^9*log(625)^3 - 659744206848*log(5)^10*log(625)^2 + 5159780352*log(5)^10*log(625)^3 + 105220104192*log(5)^1
1*log(625)^2 + 2615721984*log(5)^12*log(625)^2 - 2651553792*log(5)^13*log(625)^2 + 143327232*log(5)^14*log(625
)^2 + 23645427735168) - 1891265169666816*log(5)^2 + 2839967418182400*log(5)^3 - 2867036177662848*log(5)^4 + 19
98556328846592*log(5)^5 - 648535946761728*log(5)^6 - 213440202994176*log(5)^7 + 260272588241664*log(5)^8 - 744
7938024960*log(5)^9 - 107769550768128*log(5)^10 + 69488240062464*log(5)^11 - 25691547423744*log(5)^12 + 733703
2980480*log(5)^13 - 1524231364608*log(5)^14 + 244874575872*log(5)^15 - 29668737024*log(5)^16 + 1719926784*log(
5)^17 + 77651691984000*log(625)^2 - 17545440056832*log(625)^3 + 8332722782208*log(625)^4 + 128130284222208*log
(5)^2*log(625)^2 + 34685280563328*log(5)^2*log(625)^3 + 75710752508736*log(5)^3*log(625)^2 + 13096474875648*lo
g(5)^2*log(625)^4 - 2008006122240*log(5)^3*log(625)^3 - 275420897139456*log(5)^4*log(625)^2 - 5277064578048*lo
g(5)^3*log(625)^4 - 24390505952640*log(5)^4*log(625)^3 + 236443802146560*log(5)^5*log(625)^2 + 820102745088*lo
g(5)^4*log(625)^4 + 18923176993536*log(5)^5*log(625)^3 - 88361146149120*log(5)^6*log(625)^2 - 4915144281600*lo
g(5)^6*log(625)^3 + 2640645245952*log(5)^7*log(625)^2 + 566507602944*log(5)^7*log(625)^3 + 4149820532736*log(5
)^8*log(625)^2 - 129881346048*log(5)^8*log(625)^3 - 557121908736*log(5)^9*log(625)^2 + 12576964608*log(5)^9*lo
g(625)^3 + 150278602752*log(5)^10*log(625)^2 + 10050822144*log(5)^11*log(625)^2 - 7417184256*log(5)^12*log(625
)^2 + 429981696*log(5)^13*log(625)^2 - 16610092979328) - 249542472140352*log(5)*log(625)^2 + 3171820083223104*
log(5)^2*log(625) - 151708365794304*log(5)*log(625)^3 - 3691118174919552*log(5)^3*log(625) - 10340033543424*lo
g(5)*log(625)^4 + 1458300880718208*log(5)^4*log(625) + 1156438698682752*log(5)^5*log(625) - 1940491318163328*l
og(5)^6*log(625) + 1266838494794496*log(5)^7*log(625) - 455287069472256*log(5)^8*log(625) + 102681380284416*lo
g(5)^9*log(625) - 21136127620608*log(5)^10*log(625) + 5743088593920*log(5)^11*log(625) - 1341999747072*log(5)^
12*log(625) + 292530880512*log(5)^13*log(625) - 42711515136*log(5)^14*log(625) + 2293235712*log(5)^15*log(625)
+ 5321285528811264*log(5)^2 - 11602964332092672*log(5)^3 + 12987571260753792*log(5)^4 - 7281207399290112*log(
5)^5 + 796285905541632*log(5)^6 + 1514727802787328*log(5)^7 - 715705032957696*log(5)^8 - 256247995958784*log(5
)^9 + 400023639521280*log(5)^10 - 214605324619776*log(5)^11 + 77099075085312*log(5)^12 - 21200422201344*log(5)
^13 + 4368918601728*log(5)^14 - 685462487040*log(5)^15 + 75820105728*log(5)^16 - 4013162496*log(5)^17 + 651762
63802368*log(625)^2 + 17501823788544*log(625)^3 + 7052865467904*log(625)^4 - x*(423637276627872*log(625) - 197
1202586306688*log(5) - 1697951262638016*log(5)*log(625) - 378898129219968*log(5)*log(625)^2 + 3918604839749856
*log(5)^2*log(625) - 154164454834176*log(5)*log(625)^3 - 4470702525952128*log(5)^3*log(625) - 12796154496000*l
og(5)*log(625)^4 + 2342912837905728*log(5)^4*log(625) + 965456405518464*log(5)^5*log(625) - 2125656055931904*l
og(5)^6*log(625) + 1779212696822784*log(5)^7*log(625) - 770242413620736*log(5)^8*log(625) + 202321581401088*lo
g(5)^9*log(625) - 32878745966592*log(5)^10*log(625) + 5096772357120*log(5)^11*log(625) - 1558388035584*log(5)^
12*log(625) + 443582853120*log(5)^13*log(625) - 105775497216*log(5)^14*log(625) + 15001583616*log(5)^15*log(62
5) - 764411904*log(5)^16*log(625) + 7676512976378880*log(5)^2 - 14649143231912832*log(5)^3 + 15548833802798784
*log(5)^4 - 9459264335966208*log(5)^5 + 2165889523195008*log(5)^6 + 1064741254103808*log(5)^7 - 97624822935859
2*log(5)^8 - 106894517114880*log(5)^9 + 455983661841408*log(5)^10 - 308259721433088*log(5)^11 + 12638865698611
2*log(5)^12 - 38412368529408*log(5)^13 + 9276210118656*log(5)^14 - 1748645978112*log(5)^15 + 257176829952*log(
5)^16 - 26754416640*log(5)^17 + 1337720832*log(5)^18 - 669425886720*log(625)^2 + 50204326061952*log(625)^3 + 5
44921178112*log(625)^4 + 408146688000*log(625)^5 + 932933474444160*log(5)^2*log(625)^2 + 302512623689088*log(5
)^2*log(625)^3 - 1250928373198464*log(5)^3*log(625)^2 + 6922863189504*log(5)^2*log(625)^4 - 230370828012288*lo
g(5)^3*log(625)^3 + 665959654782720*log(5)^4*log(625)^2 - 4845426780672*log(5)^3*log(625)^4 + 141525401541120*
log(5)^4*log(625)^3 - 223013945516544*log(5)^5*log(625)^2 + 1133136138240*log(5)^4*log(625)^4 - 42046097746176
*log(5)^5*log(625)^3 - 89294335759872*log(5)^6*log(625)^2 - 92029519872*log(5)^5*log(625)^4 + 6399847563264*lo
g(5)^6*log(625)^3 + 85844323874304*log(5)^7*log(625)^2 + 127959865344*log(5)^7*log(625)^3 - 32235586661376*log
(5)^8*log(625)^2 - 241380974592*log(5)^8*log(625)^3 + 6936488607744*log(5)^9*log(625)^2 + 30286835712*log(5)^9
*log(625)^3 - 1016294584320*log(5)^10*log(625)^2 - 1504935936*log(5)^10*log(625)^3 + 150935519232*log(5)^11*lo
g(625)^2 - 8109932544*log(5)^12*log(625)^2 - 812187648*log(5)^13*log(625)^2 + 47775744*log(5)^14*log(625)^2 +
42287993569728) + 799475551473024*log(5)^2*log(625)^2 + 229380078801024*log(5)^2*log(625)^3 - 916376454017856*
log(5)^3*log(625)^2 + 6559597520640*log(5)^2*log(625)^4 - 173606942221056*log(5)^3*log(625)^3 + 51199733240294
4*log(5)^4*log(625)^2 - 2094971599872*log(5)^3*log(625)^4 + 74644836702336*log(5)^4*log(625)^3 - 9114122975616
0*log(5)^5*log(625)^2 + 233097108480*log(5)^4*log(625)^4 - 15343216577280*log(5)^5*log(625)^3 - 65642179762944
*log(5)^6*log(625)^2 + 439095292416*log(5)^6*log(625)^3 + 41907299318784*log(5)^7*log(625)^2 + 448114830336*lo
g(5)^7*log(625)^3 - 10109554956288*log(5)^8*log(625)^2 - 63126687744*log(5)^8*log(625)^3 + 1434938499072*log(5
)^9*log(625)^2 + 3547348992*log(5)^9*log(625)^3 - 284468723712*log(5)^10*log(625)^2 + 17145520128*log(5)^11*lo
g(625)^2 + 2400731136*log(5)^12*log(625)^2 - 143327232*log(5)^13*log(625)^2 + 23141794877568) - 90922973902617
6*log(5)*log(625) + x*(217389589350912*log(5) - 76391845987968*log(625) + 2115828085985280*log(5)*log(625) + 4
83029754997248*log(5)*log(625)^2 - 3933422874392832*log(5)^2*log(625) - 93869851608576*log(5)*log(625)^3 + 214
2388403400960*log(5)^3*log(625) + 2032207709184*log(5)*log(625)^4 - 178098685448832*log(5)^4*log(625) - 110410
1609847552*log(5)^5*log(625) + 840658970354688*log(5)^6*log(625) - 229567951595520*log(5)^7*log(625) - 1359523
85264640*log(5)^8*log(625) + 114547344777216*log(5)^9*log(625) - 40067174734848*log(5)^10*log(625) + 101743060
19328*log(5)^11*log(625) - 2183103664128*log(5)^12*log(625) + 372967317504*log(5)^13*log(625) - 57426444288*lo
g(5)^14*log(625) + 6975258624*log(5)^15*log(625) - 382205952*log(5)^16*log(625) - 4038996161332224*log(5)^2 +
6895743170476032*log(5)^3 - 5127566553970560*log(5)^4 + 3829426274718720*log(5)^5 - 2342791212758784*log(5)^6
+ 1199840645076480*log(5)^7 - 635177678911488*log(5)^8 + 458741813022720*log(5)^9 - 247542025549824*log(5)^10
+ 108589288476672*log(5)^11 - 43980558336000*log(5)^12 + 14921544314880*log(5)^13 - 3934416125952*log(5)^14 +
786472353792*log(5)^15 - 110553071616*log(5)^16 + 9555148800*log(5)^17 - 382205952*log(5)^18 - 256343533636608
*log(625)^2 + 6909689961216*log(625)^3 + 668997771264*log(625)^4 - 122444006400*log(625)^5 + 204831685025280*l
og(5)^2*log(625)^2 + 156579732564480*log(5)^2*log(625)^3 - 895514606710272*log(5)^3*log(625)^2 - 3079058614272
*log(5)^2*log(625)^4 - 158725358023680*log(5)^3*log(625)^3 + 1137283480779264*log(5)^4*log(625)^2 + 3532736332
800*log(5)^3*log(625)^4 + 87355865740032*log(5)^4*log(625)^3 - 702278672541696*log(5)^5*log(625)^2 - 123060761
3952*log(5)^4*log(625)^4 - 38492656786944*log(5)^5*log(625)^3 + 269928608246784*log(5)^6*log(625)^2 + 17196580
4544*log(5)^5*log(625)^4 + 10184627073024*log(5)^6*log(625)^3 - 33146308048896*log(5)^7*log(625)^2 - 145137634
0992*log(5)^7*log(625)^3 - 12047603392512*log(5)^8*log(625)^2 + 133428695040*log(5)^8*log(625)^3 + 56129900175
36*log(5)^9*log(625)^2 - 31549906944*log(5)^9*log(625)^3 - 1050194460672*log(5)^10*log(625)^2 + 3009871872*log
(5)^10*log(625)^3 + 112959774720*log(5)^11*log(625)^2 + 5195612160*log(5)^12*log(625)^2 - 2651553792*log(5)^13
*log(625)^2 + 143327232*log(5)^14*log(625)^2 + 10005723801216) - 396876912257664*log(5)*log(625)^2 + 313216170
3927936*log(5)^2*log(625) + 84288398155776*log(5)*log(625)^3 - 2809727907330816*log(5)^3*log(625) - 5218563552
768*log(5)*log(625)^4 + 350440861798656*log(5)^4*log(625) + 1162269566528256*log(5)^5*log(625) - 8985083223559
68*log(5)^6*log(625) + 181180665008640*log(5)^7*log(625) + 76098221024256*log(5)^8*log(625) - 47218556399616*l
og(5)^9*log(625) + 14978472846336*log(5)^10*log(625) - 4247453251584*log(5)^11*log(625) + 843785330688*log(5)^
12*log(625) - 139744051200*log(5)^13*log(625) + 18919194624*log(5)^14*log(625) - 1146617856*log(5)^15*log(625)
+ 392899374696960*log(5)^2 - 4618854096873984*log(5)^3 + 6761052922763520*log(5)^4 - 4770372948235776*log(5)^
5 + 1640501637829632*log(5)^6 - 257249348305920*log(5)^7 + 289380033990144*log(5)^8 - 341103447032832*log(5)^9
+ 210668161388544*log(5)^10 - 101473888665600*log(5)^11 + 38152047458304*log(5)^12 - 10538609504256*log(5)^13
+ 2175384895488*log(5)^14 - 318043127808*log(5)^15 + 28378791936*log(5)^16 - 1146617856*log(5)^17 + 184739106
184704*log(625)^2 - 18942107945472*log(625)^3 + 1744691042304*log(625)^4 - 93271265019648*log(5)^2*log(625)^2
- 123052099615488*log(5)^2*log(625)^3 + 770109330086784*log(5)^3*log(625)^2 + 5328853857792*log(5)^2*log(625)^
4 + 100580757336576*log(5)^3*log(625)^3 - 846522745330176*log(5)^4*log(625)^2 - 2458312851456*log(5)^3*log(625
)^4 - 53094336337152*log(5)^4*log(625)^3 + 454808271416832*log(5)^5*log(625)^2 + 427012134912*log(5)^4*log(625
)^4 + 18067565486592*log(5)^5*log(625)^3 - 112415553381888*log(5)^6*log(625)^2 - 2965362048000*log(5)^6*log(62
5)^3 - 4975654127616*log(5)^7*log(625)^2 + 175230978048*log(5)^7*log(625)^3 + 7944637427712*log(5)^8*log(625)^
2 - 62401093632*log(5)^8*log(625)^3 - 1479190781952*log(5)^9*log(625)^2 + 7417184256*log(5)^9*log(625)^3 + 176
077504512*log(5)^10*log(625)^2 + 16500547584*log(5)^11*log(625)^2 - 7417184256*log(5)^12*log(625)^2 + 42998169
6*log(5)^13*log(625)^2 - 20156782162176) - 1831631225478912*log(5)*log(625) - 318658071337344*log(5)*log(625)^
2 + 3704797764321408*log(5)^2*log(625) - 52658098071552*log(5)*log(625)^3 - 2028441793441536*log(5)^3*log(625)
+ 485150363136*log(5)*log(625)^4 - 1318427415385344*log(5)^4*log(625) + 2782148594694912*log(5)^5*log(625) -
2199713132756736*log(5)^6*log(625) + 1079197242269184*log(5)^7*log(625) - 345167853493248*log(5)^8*log(625) +
74682033758208*log(5)^9*log(625) - 17111428402176*log(5)^10*log(625) + 5617177860096*log(5)^11*log(625) - 1399
644168192*log(5)^12*log(625) + 298980605952*log(5)^13*log(625) - 42711515136*log(5)^14*log(625) + 2293235712*l
og(5)^15*log(625) + 6526350020206080*log(5)^2 - 12965293447469568*log(5)^3 + 11126445729451776*log(5)^4 - 3743
091385772544*log(5)^5 - 1260964735994880*log(5)^6 + 1842374339988480*log(5)^7 - 528777122305536*log(5)^8 - 324
277286851584*log(5)^9 + 377910222852096*log(5)^10 - 187943888535552*log(5)^11 + 64771936561152*log(5)^12 - 175
20114806784*log(5)^13 + 3594252828672*log(5)^14 - 567719165952*log(5)^15 + 63923945472*log(5)^16 - 3439853568*
log(5)^17 + 104617347676416*log(625)^2 + 20041423335936*log(625)^3 + 351006151680*log(625)^4 + x*(106014332321
9712*log(5) - 184850236531008*log(625) + 972645845975424*log(5)*log(625) + 415529342337024*log(5)*log(625)^2 -
3948986071350720*log(5)^2*log(625) + 67362497897472*log(5)*log(625)^3 + 4230296690220288*log(5)^3*log(625) +
899192503296*log(5)*log(625)^4 + 462475394757504*log(5)^4*log(625) - 3285903685789440*log(5)^5*log(625) + 3081
363949191168*log(5)^6*log(625) - 1676189761026048*log(5)^7*log(625) + 611179362081792*log(5)^8*log(625) - 1406
68192346112*log(5)^9*log(625) + 19960174338048*log(5)^10*log(625) - 3750896056320*log(5)^11*log(625) + 1569594
433536*log(5)^12*log(625) - 469677367296*log(5)^13*log(625) + 108355387392*log(5)^14*log(625) - 15001583616*lo
g(5)^15*log(625) + 764411904*log(5)^16*log(625) - 4792096137666816*log(5)^2 + 13210418095582464*log(5)^3 - 156
24487214896896*log(5)^4 + 7091467280695296*log(5)^5 + 305359702232832*log(5)^6 - 2123193924380160*log(5)^7 + 9
08470082488320*log(5)^8 + 239536379990016*log(5)^9 - 492884808192000*log(5)^10 + 300823447781376*log(5)^11 - 1
16438874568704*log(5)^12 + 34016714919936*log(5)^13 - 7992123531264*log(5)^14 + 1481155559424*log(5)^15 - 2169
97429248*log(5)^16 + 22741254144*log(5)^17 - 1146617856*log(5)^18 - 8368386255360*log(625)^2 - 29770315160832*
log(625)^3 - 766227382272*log(625)^4 + 16325867520*log(625)^5 - 544945167320832*log(5)^2*log(625)^2 - 63711686
239488*log(5)^2*log(625)^3 - 69598821127680*log(5)^3*log(625)^2 + 60405709824*log(5)^2*log(625)^4 + 6134441025
4848*log(5)^3*log(625)^3 + 308738828537856*log(5)^4*log(625)^2 - 690040000512*log(5)^3*log(625)^4 - 4434741185
1264*log(5)^4*log(625)^3 - 244315903491072*log(5)^5*log(625)^2 + 314907844608*log(5)^4*log(625)^4 + 2290555156
8384*log(5)^5*log(625)^3 + 121579383753216*log(5)^6*log(625)^2 - 56596340736*log(5)^5*log(625)^4 - 64341923512
32*log(5)^6*log(625)^3 - 54366744554496*log(5)^7*log(625)^2 + 783534145536*log(5)^7*log(625)^3 + 1782640958054
4*log(5)^8*log(625)^2 + 9137111040*log(5)^8*log(625)^3 - 3771473965056*log(5)^9*log(625)^2 + 3278610432*log(5)
^9*log(625)^3 + 614503563264*log(5)^10*log(625)^2 - 644972544*log(5)^10*log(625)^3 - 126319067136*log(5)^11*lo
g(625)^2 + 8109932544*log(5)^12*log(625)^2 + 812187648*log(5)^13*log(625)^2 - 47775744*log(5)^14*log(625)^2 -
47290855470336) + 215189872418304*log(5)^2*log(625)^2 + 68881611472128*log(5)^2*log(625)^3 + 33531385491072*lo
g(5)^3*log(625)^2 - 1111519480320*log(5)^2*log(625)^4 - 62596046661120*log(5)^3*log(625)^3 - 104238031597056*l
og(5)^4*log(625)^2 + 650857918464*log(5)^3*log(625)^4 + 38359142431488*log(5)^4*log(625)^3 + 73199442313728*lo
g(5)^5*log(625)^2 - 140402460672*log(5)^4*log(625)^4 - 13172425431552*log(5)^5*log(625)^3 - 48156193073664*log
(5)^6*log(625)^2 + 1900472067072*log(5)^6*log(625)^3 + 22349575157760*log(5)^7*log(625)^2 + 40351094784*log(5)
^7*log(625)^3 - 5100416004096*log(5)^8*log(625)^2 + 5965996032*log(5)^8*log(625)^3 + 649200697344*log(5)^9*log
(625)^2 - 1612431360*log(5)^9*log(625)^3 - 226098708480*log(5)^10*log(625)^2 + 17145520128*log(5)^11*log(625)^
2 + 2400731136*log(5)^12*log(625)^2 - 143327232*log(5)^13*log(625)^2 + 33220185958656) - 335112687862272*log(5
)^2*log(625)^2 - 3328952722560*log(5)^2*log(625)^3 + 199671715016640*log(5)^3*log(625)^2 + 93737689344*log(5)^
2*log(625)^4 + 8225662378752*log(5)^3*log(625)^3 - 21978462322944*log(5)^4*log(625)^2 - 70201230336*log(5)^3*l
og(625)^4 - 7170550282368*log(5)^4*log(625)^3 - 51732748908288*log(5)^5*log(625)^2 + 18684048384*log(5)^4*log(
625)^4 + 2832452354304*log(5)^5*log(625)^3 + 36275346996480*log(5)^6*log(625)^2 - 452155986432*log(5)^6*log(62
5)^3 - 10355215592448*log(5)^7*log(625)^2 - 15701050368*log(5)^7*log(625)^3 + 1088915208192*log(5)^8*log(625)^
2 + 1531809792*log(5)^8*log(625)^3 + 93924126720*log(5)^9*log(625)^2 + 36118462464*log(5)^10*log(625)^2 - 6449
725440*log(5)^11*log(625)^2 + 3546689182848) - 423006223038336*log(5)*log(625) + x*(107886233038464*log(5) - 1
5949333934496*log(625) + 247625574828480*log(5)*log(625) + 73665590341248*log(5)*log(625)^2 - 777271053777120*
log(5)^2*log(625) + 778905123840*log(5)*log(625)^3 + 501756438473856*log(5)^3*log(625) - 7135008768*log(5)*log
(625)^4 + 176461089755328*log(5)^4*log(625) - 357274422324864*log(5)^5*log(625) + 141577352064000*log(5)^6*log
(625) + 15032126499840*log(5)^7*log(625) - 35048913228288*log(5)^8*log(625) + 13980458456064*log(5)^9*log(625)
- 2664368142336*log(5)^10*log(625) + 69690627072*log(5)^11*log(625) + 86883176448*log(5)^12*log(625) - 260945
14176*log(5)^13*log(625) + 2579890176*log(5)^14*log(625) - 849582746461440*log(5)^2 + 2274011612111232*log(5)^
3 - 1742030060687424*log(5)^4 + 45357936021504*log(5)^5 + 620994344397696*log(5)^6 - 287599652414208*log(5)^7
- 19578058712064*log(5)^8 + 54290168248320*log(5)^9 - 5791110681600*log(5)^10 - 13669288316928*log(5)^11 + 105
41437231104*log(5)^12 - 4423172438016*log(5)^13 + 1284086587392*log(5)^14 - 267490418688*log(5)^15 + 401794007
04*log(5)^16 - 4013162496*log(5)^17 + 191102976*log(5)^18 - 18895585941504*log(625)^2 - 155481213312*log(625)^
3 + 3144241152*log(625)^4 - 47318376258432*log(5)^2*log(625)^2 - 995621777280*log(5)^2*log(625)^3 - 1800234683
7120*log(5)^3*log(625)^2 + 3537271296*log(5)^2*log(625)^4 + 544885906176*log(5)^3*log(625)^3 + 32936690292480*
log(5)^4*log(625)^2 + 1300022784*log(5)^3*log(625)^4 + 44123512320*log(5)^4*log(625)^3 - 12028331478528*log(5)
^5*log(625)^2 - 1209323520*log(5)^4*log(625)^4 - 186200550144*log(5)^5*log(625)^3 - 1359084801024*log(5)^6*log
(625)^2 + 362797056*log(5)^5*log(625)^4 + 83497070592*log(5)^6*log(625)^3 + 2515839699456*log(5)^7*log(625)^2
- 14686562304*log(5)^7*log(625)^3 - 730599367680*log(5)^8*log(625)^2 - 268738560*log(5)^8*log(625)^3 + 6312668
7744*log(5)^9*log(625)^2 + 26873856*log(5)^9*log(625)^3 + 14431260672*log(5)^10*log(625)^2 - 1182449664*log(5)
^11*log(625)^2 - 5002861900608) - 46796808041280*log(5)*log(625)^2 + 443702516475456*log(5)^2*log(625) - 89217
8426880*log(5)*log(625)^3 + 293679588650112*log(5)^3*log(625) + 5124508416*log(5)*log(625)^4 - 585414728687232
*log(5)^4*log(625) + 235645720007040*log(5)^5*log(625) + 55490603333760*log(5)^6*log(625) - 90833453561088*log
(5)^7*log(625) + 38233156114944*log(5)^8*log(625) - 8464418113536*log(5)^9*log(625) + 712120232448*log(5)^10*l
og(625) + 121758723072*log(5)^11*log(625) - 57644421120*log(5)^12*log(625) + 6449725440*log(5)^13*log(625) + 1
205064491394816*log(5)^2 - 1243295562546432*log(5)^3 - 607169911257216*log(5)^4 + 1539676325604096*log(5)^5 -
858669784229376*log(5)^6 + 142572955645440*log(5)^7 + 25901485426944*log(5)^8 + 27818788925952*log(5)^9 - 4815
9987886080*log(5)^10 + 31078208065536*log(5)^11 - 12657364466688*log(5)^12 + 3680307394560*log(5)^13 - 7746657
73056*log(5)^14 + 117743321088*log(5)^15 - 11896160256*log(5)^16 + 573308928*log(5)^17 + 39441083874048*log(62
5)^2 + 679700284416*log(625)^3 - 6076850688*log(625)^4 - 27771441950592*log(5)^2*log(625)^2 + 567865572480*log
(5)^2*log(625)^3 + 55837546914240*log(5)^3*log(625)^2 + 2766327552*log(5)^2*log(625)^4 + 196469722368*log(5)^3
*log(625)^3 - 23155053486336*log(5)^4*log(625)^2 - 2720977920*log(5)^3*log(625)^4 - 411313603968*log(5)^4*log(
625)^3 - 2291048292096*log(5)^5*log(625)^2 + 906992640*log(5)^4*log(625)^4 + 193950298368*log(5)^5*log(625)^3
+ 5265046925568*log(5)^6*log(625)^2 - 36249472512*log(5)^6*log(625)^3 - 1586209195008*log(5)^7*log(625)^2 - 78
6060288*log(5)^7*log(625)^3 + 125406849024*log(5)^8*log(625)^2 + 80621568*log(5)^8*log(625)^3 + 42406944768*lo
g(5)^9*log(625)^2 - 3547348992*log(5)^10*log(625)^2 + 10078391081088)*root(12476089554*z^5*log(5)*log(625) - 4
950250980*z^5*log(5)^2*log(625)^2 + 484358724*z^5*log(5)^4*log(625)^3 - 239636880*z^5*log(5)^2*log(625)^4 - 94
885776*z^5*log(5)^5*log(625)^3 + 88216560*z^5*log(5)^7*log(625)^2 - 54064008*z^5*log(5)^6*log(625)^2 - 2540620
8*z^5*log(5)^8*log(625)^2 + 19994256*z^5*log(5)^6*log(625)^3 + 19789920*z^5*log(5)^3*log(625)^4 + 8000000*z^5*
log(5)^9*log(625)^2 - 4233600*z^5*log(5)^7*log(625)^3 - 3421440*z^5*log(5)^4*log(625)^4 + 559872*z^5*log(5)^5*
log(625)^4 - 450048*z^5*log(5)^10*log(625)^2 + 179712*z^5*log(5)^8*log(625)^3 - 33024*z^5*log(5)^11*log(625)^2
+ 2048*z^5*log(5)^12*log(625)^2 + 1215973440*z^5*log(5)^6*log(625) + 9497495360*z^5*log(5)^3*log(625) - 85560
0912*z^5*log(5)^8*log(625) + 13353194984*z^5*log(5)^5*log(625) - 184310640*z^5*log(5)*log(625)^4 - 2876069088*
z^5*log(5)^5*log(625)^2 + 160323520*z^5*log(5)^9*log(625) - 2728181808*z^5*log(5)^4*log(625)^2 - 30926256*z^5*
log(5)^10*log(625) + 990592*z^5*log(5)^11*log(625) - 364544*z^5*log(5)^12*log(625) + 132096*z^5*log(5)^13*log(
625) - 8192*z^5*log(5)^14*log(625) - 11135933108*z^5*log(5)^3*log(625)^2 + 2104890516*z^5*log(5)^2*log(625)^3
- 3271912237*z^5*log(5)^2*log(625) + 3105872352*z^5*log(5)^7*log(625) + 1183695336*z^5*log(5)^3*log(625)^3 - 2
672150172*z^5*log(5)*log(625)^2 + 2581668072*z^5*log(5)*log(625)^3 + 11029505352*z^5*log(5)^4*log(625) - 37976
590196*z^5*log(5)^3 - 7612365760*z^5*log(5)^5 - 11759677728*z^5*log(5)^6 + 19970762026*z^5*log(5)^4 - 26094041
60*z^5*log(5)^7 - 1227877888*z^5*log(5)^9 + 1212381648*z^5*log(625)^3 + 31218036596*z^5*log(5)^2 + 7000018859*
z^5*log(625) + 722077440*z^5*log(5)^10 - 553335264*z^5*log(5)^8 - 489522528*z^5*log(625)^4 - 31967952756*z^5*l
og(5) - 231140288*z^5*log(5)^11 - 4434737216*z^5*log(625)^2 + 58274528*z^5*log(5)^12 + 36450000*z^5*log(625)^5
- 9070336*z^5*log(5)^13 + 1091584*z^5*log(5)^14 - 132096*z^5*log(5)^15 + 8192*z^5*log(5)^16 + 705818410*z^5 +
4925603232*z^4*log(5)^5*log(625)^2 + 2112984720*z^4*log(5)^8*log(625) - 507883176*z^4*log(5)^3*log(625)^3 - 4
22627760*z^4*log(5)^7*log(625)^2 + 385436880*z^4*log(5)^2*log(625)^4 + 219805776*z^4*log(5)^4*log(625)^2 + 203
656464*z^4*log(5)^5*log(625)^3 - 10394524512*z^4*log(5)^7*log(625) + 103641408*z^4*log(5)^8*log(625)^2 - 38158
992*z^4*log(5)^6*log(625)^3 - 21893120*z^4*log(5)^9*log(625)^2 - 19789920*z^4*log(5)^3*log(625)^4 + 6473088*z^
4*log(5)^7*log(625)^3 + 3421440*z^4*log(5)^4*log(625)^4 + 1168896*z^4*log(5)^10*log(625)^2 - 559872*z^4*log(5)
^5*log(625)^4 - 179712*z^4*log(5)^8*log(625)^3 + 33024*z^4*log(5)^11*log(625)^2 - 2048*z^4*log(5)^12*log(625)^
2 + 23951396350*z^4*log(5)*log(625) - 7484890188*z^4*log(5)^2*log(625)^2 - 34728028771*z^4*log(5)^2*log(625) +
15901362260*z^4*log(5)^3*log(625)^2 + 17457193960*z^4*log(5)^4*log(625) - 2963843028*z^4*log(5)^2*log(625)^3
- 268816256*z^4*log(5)^9*log(625) - 107289360*z^4*log(5)*log(625)^4 + 21409328*z^4*log(5)^10*log(625) + 140695
92*z^4*log(5)*log(625)^3 + 6691456*z^4*log(5)^11*log(625) - 280576*z^4*log(5)^13*log(625) + 274432*z^4*log(5)^
12*log(625) + 16384*z^4*log(5)^14*log(625) + 8491244604*z^4*log(5)*log(625)^2 - 3958773472*z^4*log(5)^3*log(62
5) - 33945822712*z^4*log(5)^5*log(625) + 7771370688*z^4*log(5)^6*log(625) - 1323311364*z^4*log(5)^4*log(625)^3
+ 1116327384*z^4*log(5)^6*log(625)^2 + 235978643332*z^4*log(5)^3 + 28864119904*z^4*log(5)^6 - 3055040512*z^4*
log(5)^10 + 2955326208*z^4*log(5)^7 - 21705874987*z^4*log(625) - 2878871760*z^4*log(625)^3 + 98727131908*z^4*l
og(5) - 221525920812*z^4*log(5)^2 - 2362697568*z^4*log(5)^8 - 83946835838*z^4*log(5)^4 - 19328727360*z^4*log(5
)^5 + 6343178880*z^4*log(5)^9 + 5951283584*z^4*log(625)^2 + 922185408*z^4*log(5)^11 + 635322528*z^4*log(625)^4
- 210576544*z^4*log(5)^12 - 36450000*z^4*log(625)^5 + 31544576*z^4*log(5)^13 - 3803136*z^4*log(5)^14 + 429056
*z^4*log(5)^15 - 24576*z^4*log(5)^16 - 2117455230*z^4 - 5056253112*z^3*log(5)^2*log(625)^2 + 36590909904*z^3*l
og(5)^5*log(625) - 519193008*z^3*log(5)^3*log(625)^3 + 472670496*z^3*log(5)^7*log(625)^2 - 199633248*z^3*log(5
)^2*log(625)^4 - 4476161224*z^3*log(5)^3*log(625)^2 - 104205312*z^3*log(5)^8*log(625)^2 - 102726432*z^3*log(5)
^5*log(625)^3 + 20580192*z^3*log(5)^6*log(625)^3 + 17629696*z^3*log(5)^9*log(625)^2 - 2760192*z^3*log(5)^7*log
(625)^3 + 1378944*z^3*log(5)^3*log(625)^4 - 1140480*z^3*log(5)^4*log(625)^4 - 858624*z^3*log(5)^10*log(625)^2
+ 186624*z^3*log(5)^5*log(625)^4 + 33024*z^3*log(5)^11*log(625)^2 - 32256*z^3*log(5)^8*log(625)^3 - 2048*z^3*l
og(5)^12*log(625)^2 - 119016565348*z^3*log(5)*log(625) - 48652877872*z^3*log(5)^4*log(625) - 1402357680*z^3*lo
g(5)*log(625)^3 - 9500731896*z^3*log(5)*log(625)^2 - 774510048*z^3*log(5)^8*log(625) + 8988637248*z^3*log(5)^7
*log(625) - 162137088*z^3*log(5)^9*log(625) + 99250272*z^3*log(5)*log(625)^4 + 91867744*z^3*log(5)^10*log(625)
- 12911143104*z^3*log(5)^6*log(625) - 24288000*z^3*log(5)^11*log(625) + 1763328*z^3*log(5)^12*log(625) + 1638
4*z^3*log(5)^13*log(625) + 2503084824*z^3*log(5)^2*log(625)^3 + 106774904202*z^3*log(5)^2*log(625) + 464337340
80*z^3*log(5)^3*log(625) - 1875765744*z^3*log(5)^6*log(625)^2 - 1321103232*z^3*log(5)^5*log(625)^2 - 119028816
0*z^3*log(5)^4*log(625)^2 + 1016363880*z^3*log(5)^4*log(625)^3 - 91421991032*z^3*log(5) + 3864329216*z^3*log(5
)^10 + 398924518664*z^3*log(5)^2 - 8012949760*z^3*log(5)^7 + 20871559098*z^3*log(625) + 66470526036*z^3*log(5)
^4 + 32064662912*z^3*log(5)^5 + 6092183840*z^3*log(625)^2 + 1580391792*z^3*log(625)^3 - 1078169216*z^3*log(5)^
11 - 18161258048*z^3*log(5)^6 - 9461309696*z^3*log(5)^9 - 408685414008*z^3*log(5)^3 + 9037260864*z^3*log(5)^8
+ 220962240*z^3*log(5)^12 - 172746432*z^3*log(625)^4 - 29695488*z^3*log(5)^13 + 14580000*z^3*log(625)^5 + 3272
704*z^3*log(5)^14 - 329728*z^3*log(5)^15 + 16384*z^3*log(5)^16 + 1411636820*z^3 + 731908944*z^2*log(5)^6*log(6
25)^2 - 2018465424*z^2*log(5)*log(625)^3 + 343730088*z^2*log(5)^2*log(625)^3 + 21804595032*z^2*log(5)^2*log(62
5)^2 - 239178888*z^2*log(5)^4*log(625)^3 - 126620064*z^2*log(5)^7*log(625)^2 + 116307072*z^2*log(5)^5*log(625)
^2 - 101972880*z^2*log(5)^3*log(625)^3 + 55735776*z^2*log(5)^2*log(625)^4 + 29572992*z^2*log(5)^8*log(625)^2 +
6754464*z^2*log(5)^5*log(625)^3 - 5993568*z^2*log(5)^6*log(625)^3 - 3483136*z^2*log(5)^9*log(625)^2 + 1233792
*z^2*log(5)^3*log(625)^4 + 622080*z^2*log(5)^7*log(625)^3 + 145152*z^2*log(5)^4*log(625)^4 - 33024*z^2*log(5)^
11*log(625)^2 + 32256*z^2*log(5)^8*log(625)^3 - 20736*z^2*log(5)^5*log(625)^4 + 10752*z^2*log(5)^10*log(625)^2
+ 2048*z^2*log(5)^12*log(625)^2 - 895330080*z^2*log(5)^8*log(625) - 64822705034*z^2*log(5)^2*log(625) + 87868
168964*z^2*log(5)*log(625) + 353612672*z^2*log(5)^9*log(625) - 110582624*z^2*log(5)^10*log(625) - 50188608*z^2
*log(5)^7*log(625) - 49141728*z^2*log(5)*log(625)^4 - 42206280*z^2*log(5)*log(625)^2 + 23227136*z^2*log(5)^11*
log(625) - 2762752*z^2*log(5)^12*log(625) + 280576*z^2*log(5)^13*log(625) - 16384*z^2*log(5)^14*log(625) + 371
3381200*z^2*log(5)^5*log(625) - 3516020928*z^2*log(5)^6*log(625) + 7344185168*z^2*log(5)^4*log(625) + 13965105
60*z^2*log(5)^4*log(625)^2 - 50162611328*z^2*log(5)^3*log(625) - 5122688120*z^2*log(5)^3*log(625)^2 + 12523800
192*z^2*log(5)^5 - 3866129856*z^2*log(5)^8 + 11799892736*z^2*log(5)^7 - 20116481088*z^2*log(5)^6 + 17454270946
4*z^2*log(5)^3 + 2364424192*z^2*log(5)^9 + 10878270548*z^2*log(5)^4 - 178373890200*z^2*log(5)^2 - 9547849184*z
^2*log(625)^2 + 827671536*z^2*log(625)^3 - 2379615962*z^2*log(625) - 555588096*z^2*log(5)^10 + 65308800*z^2*lo
g(5)^11 + 28952640*z^2*log(625)^4 + 16991680*z^2*log(5)^12 - 10534400*z^2*log(5)^13 - 2916000*z^2*log(625)^5 +
2150400*z^2*log(5)^14 - 264192*z^2*log(5)^15 + 16384*z^2*log(5)^16 + 1582709208*z^2*log(5) + 1411636820*z^2 +
2205604944*z*log(5)^4*log(625)^2 + 29199388648*z*log(5)^4*log(625) - 6021563364*z*log(5)^2*log(625)^2 + 68484
32532*z*log(5)*log(625)^2 - 794356128*z*log(5)^5*log(625)^2 + 10768621312*z*log(5)^3*log(625) - 1800735264*z*l
og(5)^7*log(625) - 197216172*z*log(5)^2*log(625)^3 + 34038216*z*log(5)^3*log(625)^3 + 25612884*z*log(5)^4*log(
625)^3 - 8005392*z*log(5)^2*log(625)^4 - 5089536*z*log(5)^8*log(625)^2 + 4864752*z*log(5)^7*log(625)^2 + 47916
72*z*log(5)^6*log(625)^2 + 3868848*z*log(5)^5*log(625)^3 + 934416*z*log(5)^6*log(625)^3 - 308448*z*log(5)^3*lo
g(625)^4 + 129024*z*log(5)^10*log(625)^2 - 119808*z*log(5)^9*log(625)^2 - 102528*z*log(5)^7*log(625)^3 + 94938
9768*z*log(5)*log(625)^3 - 22285898168*z*log(5)^5*log(625) - 30871833629*z*log(5)^2*log(625) + 397443312*z*log
(5)^8*log(625) + 8751051648*z*log(5)^6*log(625) - 63067072*z*log(5)^9*log(625) + 23127324946*z*log(5)*log(625)
+ 21633872*z*log(5)^10*log(625) + 10929168*z*log(5)*log(625)^4 - 5309056*z*log(5)^11*log(625) + 960512*z*log(
5)^12*log(625) - 148480*z*log(5)^13*log(625) + 8192*z*log(5)^14*log(625) - 2580460164*z*log(5)^3*log(625)^2 -
5290987104*z*log(5)^8 + 116891477228*z*log(5)^3 - 848443968*z*log(625)^3 - 812301408*z*log(625)^2 - 762456576*
z*log(5)^7 + 561412672*z*log(5)^11 - 145936544*z*log(5)^12 - 6032039717*z*log(625) + 36031790828*z*log(5) + 29
328640*z*log(5)^13 - 5927904*z*log(625)^4 - 4364288*z*log(5)^14 + 461824*z*log(5)^15 + 291600*z*log(625)^5 - 2
4576*z*log(5)^16 + 3720158976*z*log(5)^9 + 16489887584*z*log(5)^6 - 15539807680*z*log(5)^5 - 110012275324*z*lo
g(5)^2 - 61970024830*z*log(5)^4 - 1717502720*z*log(5)^10 - 2117455230*z - 18749736*log(5)^6*log(625)^2 + 15585
84*log(5)^3*log(625)^3 + 1486656*log(5)^8*log(625)^2 - 1004148*log(5)^4*log(625)^3 + 944172*log(5)^2*log(625)^
3 - 742320*log(5)^5*log(625)^3 - 578736*log(5)^7*log(625)^2 + 462672*log(5)^2*log(625)^4 - 133632*log(5)^9*log
(625)^2 + 18144*log(5)^3*log(625)^4 - 10512*log(5)^6*log(625)^3 + 1152*log(5)^7*log(625)^3 + 26919575469*log(5
)^2*log(625) - 28406414466*log(5)*log(625) + 405742752*log(5)^7*log(625) - 71220168*log(5)*log(625)^3 - 274543
20*log(5)^8*log(625) - 19915776*log(5)^9*log(625) + 6597936*log(5)^10*log(625) - 1312128*log(5)^11*log(625) -
851472*log(5)*log(625)^4 + 129024*log(5)^12*log(625) + 4018123944*log(5)^5*log(625) - 11729119392*log(5)^3*log
(625) - 3124588788*log(5)*log(625)^2 - 3000186936*log(5)^4*log(625) + 1389857652*log(5)^2*log(625)^2 + 4863974
76*log(5)^3*log(625)^2 - 444909744*log(5)^4*log(625)^2 - 1905774336*log(5)^6*log(625) + 172571616*log(5)^5*log
(625)^2 - 80750825820*log(5)^3 + 3239520224*log(5)^6 + 2781084960*log(5)^8 - 2775865856*log(5)^7 - 12951688156
*log(5) + 2751420384*log(625)^2 + 79769531076*log(5)^2 - 1696107136*log(5)^9 + 741724672*log(5)^10 + 224595270
9*log(625) + 47747955498*log(5)^4 - 239597376*log(5)^11 + 106870752*log(625)^3 + 60284640*log(5)^12 - 11572992
*log(5)^13 + 1652736*log(5)^14 + 603936*log(625)^4 - 164864*log(5)^15 - 11664*log(625)^5 + 8192*log(5)^16 - 12
427123008*log(5)^5 + 705818410, z, k), k, 1, 5)
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x**2-6)*ln(x**4+4*x**2+4)**2+(-2*x**5-4*x**3)*ln(x**4+4*x**2+4)+4*x**5)/(((x**4+2*x**2)*ln(5)-x
**4+3*x**3-2*x**2+6*x)*ln(x**4+4*x**2+4)**2+(-x**6-2*x**4)*ln(x**4+4*x**2+4)),x)
[Out]
Exception raised: PolynomialError
________________________________________________________________________________________