Optimal. Leaf size=25 \[ -\frac {3}{5}+\frac {x}{4}-e^6 \left (-x+\frac {x^2}{2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 20, normalized size of antiderivative = 0.80, number of steps used = 2, number of rules used = 1, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12} \begin {gather*} \frac {x}{4}-\frac {1}{2} e^6 (1-x)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (1+e^6 (4-4 x)\right ) \, dx\\ &=-\frac {1}{2} e^6 (1-x)^2+\frac {x}{4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 21, normalized size = 0.84 \begin {gather*} \frac {x}{4}+e^6 x-\frac {e^6 x^2}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 15, normalized size = 0.60 \begin {gather*} -\frac {1}{2} \, {\left (x^{2} - 2 \, x\right )} e^{6} + \frac {1}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 15, normalized size = 0.60 \begin {gather*} -\frac {1}{2} \, {\left (x^{2} - 2 \, x\right )} e^{6} + \frac {1}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.64
method | result | size |
risch | \(-\frac {x^{2} {\mathrm e}^{6}}{2}+x \,{\mathrm e}^{6}+\frac {x}{4}\) | \(16\) |
gosper | \(-\frac {x \left (2 x \,{\mathrm e}^{6}-4 \,{\mathrm e}^{6}-1\right )}{4}\) | \(19\) |
norman | \(\left ({\mathrm e}^{6}+\frac {1}{4}\right ) x -\frac {x^{2} {\mathrm e}^{6}}{2}\) | \(19\) |
default | \(\frac {{\mathrm e}^{6} \left (-2 x^{2}+4 x \right )}{4}+\frac {x}{4}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 15, normalized size = 0.60 \begin {gather*} -\frac {1}{2} \, {\left (x^{2} - 2 \, x\right )} e^{6} + \frac {1}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 17, normalized size = 0.68 \begin {gather*} -\frac {\left (4\,x-4\right )\,\left ({\mathrm {e}}^6\,\left (4\,x-4\right )-2\right )}{32} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 15, normalized size = 0.60 \begin {gather*} - \frac {x^{2} e^{6}}{2} + x \left (\frac {1}{4} + e^{6}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________