Optimal. Leaf size=21 \[ \frac {1}{2}-3 e^{-e^{4-x} (4+\log (2))} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 24, normalized size of antiderivative = 1.14, number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 2282, 2194} \begin {gather*} -3 2^{-e^{4-x}} e^{-4 e^{4-x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left ((12+3 \log (2)) \int e^{4-x-e^{4-x} (4+\log (2))} \, dx\right )\\ &=(12+3 \log (2)) \operatorname {Subst}\left (\int e^{4-e^4 x (4+\log (2))} \, dx,x,e^{-x}\right )\\ &=-3 2^{-e^{4-x}} e^{-4 e^{4-x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 17, normalized size = 0.81 \begin {gather*} -3 e^{-e^{4-x} (4+\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 15, normalized size = 0.71 \begin {gather*} -3 \, e^{\left (-{\left (\log \relax (2) + 4\right )} e^{\left (-x + 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 50, normalized size = 2.38 \begin {gather*} -\frac {3 \, {\left (\log \relax (2) + 4\right )} e^{\left (-e^{\left (-x + 4\right )} \log \relax (2) - x - 4 \, e^{\left (-x + 4\right )} + 4\right )}}{e^{\left (-x + 4\right )} \log \relax (2) + 4 \, e^{\left (-x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.81
method | result | size |
norman | \(-3 \,{\mathrm e}^{-\left (4+\ln \relax (2)\right ) {\mathrm e}^{-x +4}}\) | \(17\) |
default | \(\frac {\left (-3 \ln \relax (2)-12\right ) {\mathrm e}^{-\left (4+\ln \relax (2)\right ) {\mathrm e}^{-x +4}}}{4+\ln \relax (2)}\) | \(28\) |
derivativedivides | \(-\frac {\left (12+3 \ln \relax (2)\right ) {\mathrm e}^{-\left (4+\ln \relax (2)\right ) {\mathrm e}^{-x +4}}}{4+\ln \relax (2)}\) | \(29\) |
risch | \(-\frac {3 \,{\mathrm e}^{-\left (4+\ln \relax (2)\right ) {\mathrm e}^{-x +4}} \ln \relax (2)}{4+\ln \relax (2)}-\frac {12 \,{\mathrm e}^{-\left (4+\ln \relax (2)\right ) {\mathrm e}^{-x +4}}}{4+\ln \relax (2)}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 22, normalized size = 1.05 \begin {gather*} -3 \, e^{\left (-e^{\left (-x + 4\right )} \log \relax (2) - 4 \, e^{\left (-x + 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 31, normalized size = 1.48 \begin {gather*} -\frac {{\mathrm {e}}^{-4\,{\mathrm {e}}^{4-x}}\,\left (\ln \relax (8)+12\right )}{2^{{\mathrm {e}}^{4-x}}\,\left (\ln \relax (2)+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 14, normalized size = 0.67 \begin {gather*} - 3 e^{- \left (\log {\relax (2 )} + 4\right ) e^{4 - x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________