Optimal. Leaf size=24 \[ x \log \left (5+\frac {e^{\frac {3}{-\frac {12}{5}+x}}}{-3+4 x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 5.79, antiderivative size = 29, normalized size of antiderivative = 1.21, number of steps used = 11, number of rules used = 4, integrand size = 150, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {6688, 6742, 2228, 2548} \begin {gather*} x \log \left (\frac {-20 x-e^{-\frac {15}{12-5 x}}+15}{3-4 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2228
Rule 2548
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {e^{\frac {15}{-12+5 x}} x \left (351-180 x+100 x^2\right )}{(12-5 x)^2 (-3+4 x) \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )}+\log \left (\frac {-15+e^{\frac {15}{-12+5 x}}+20 x}{-3+4 x}\right )\right ) \, dx\\ &=-\int \frac {e^{\frac {15}{-12+5 x}} x \left (351-180 x+100 x^2\right )}{(12-5 x)^2 (-3+4 x) \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )} \, dx+\int \log \left (\frac {-15+e^{\frac {15}{-12+5 x}}+20 x}{-3+4 x}\right ) \, dx\\ &=x \log \left (\frac {15-e^{-\frac {15}{12-5 x}}-20 x}{3-4 x}\right )-\int \frac {e^{\frac {15}{-12+5 x}} x \left (-351+180 x-100 x^2\right )}{\left (15-e^{\frac {15}{-12+5 x}}-20 x\right ) (12-5 x)^2 (3-4 x)} \, dx-\int \left (\frac {e^{\frac {15}{-12+5 x}}}{-15+e^{\frac {15}{-12+5 x}}+20 x}+\frac {3 e^{\frac {15}{-12+5 x}}}{(-3+4 x) \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )}+\frac {180 e^{\frac {15}{-12+5 x}}}{(-12+5 x)^2 \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )}+\frac {15 e^{\frac {15}{-12+5 x}}}{(-12+5 x) \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )}\right ) \, dx\\ &=x \log \left (\frac {15-e^{-\frac {15}{12-5 x}}-20 x}{3-4 x}\right )-3 \int \frac {e^{\frac {15}{-12+5 x}}}{(-3+4 x) \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )} \, dx-15 \int \frac {e^{\frac {15}{-12+5 x}}}{(-12+5 x) \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )} \, dx-180 \int \frac {e^{\frac {15}{-12+5 x}}}{(-12+5 x)^2 \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )} \, dx-\int \frac {e^{\frac {15}{-12+5 x}}}{-15+e^{\frac {15}{-12+5 x}}+20 x} \, dx-\int \left (-\frac {e^{\frac {15}{-12+5 x}}}{-15+e^{\frac {15}{-12+5 x}}+20 x}-\frac {3 e^{\frac {15}{-12+5 x}}}{(-3+4 x) \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )}-\frac {180 e^{\frac {15}{-12+5 x}}}{(-12+5 x)^2 \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )}-\frac {15 e^{\frac {15}{-12+5 x}}}{(-12+5 x) \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )}\right ) \, dx\\ &=x \log \left (\frac {15-e^{-\frac {15}{12-5 x}}-20 x}{3-4 x}\right )+15 \int \frac {e^{\frac {15}{-12+5 x}}}{(-12+5 x) \left (-15+e^{\frac {15}{-12+5 x}}+20 x\right )} \, dx+\frac {15 \operatorname {Subst}\left (\int \frac {\exp \left (-\frac {300}{240+5 \left (-15+e^{\frac {15}{-12+5 x}}\right )}+\frac {75 x}{240+5 \left (-15+e^{\frac {15}{-12+5 x}}\right )}\right )}{x} \, dx,x,\frac {-15+e^{\frac {15}{-12+5 x}}+20 x}{-12+5 x}\right )}{240+5 \left (-15+e^{\frac {15}{-12+5 x}}\right )}\\ &=x \log \left (\frac {15-e^{-\frac {15}{12-5 x}}-20 x}{3-4 x}\right )+\frac {15 \operatorname {Subst}\left (\int \frac {e^{\frac {15 (-4+x)}{33+e^{\frac {15}{-12+5 x}}}}}{x} \, dx,x,\frac {-15+e^{\frac {15}{-12+5 x}}+20 x}{-12+5 x}\right )}{240+5 \left (-15+e^{\frac {15}{-12+5 x}}\right )}-\frac {15 \operatorname {Subst}\left (\int \frac {\exp \left (-\frac {300}{240+5 \left (-15+e^{\frac {15}{-12+5 x}}\right )}+\frac {75 x}{240+5 \left (-15+e^{\frac {15}{-12+5 x}}\right )}\right )}{x} \, dx,x,\frac {-15+e^{\frac {15}{-12+5 x}}+20 x}{-12+5 x}\right )}{240+5 \left (-15+e^{\frac {15}{-12+5 x}}\right )}\\ &=x \log \left (\frac {15-e^{-\frac {15}{12-5 x}}-20 x}{3-4 x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.76, size = 27, normalized size = 1.12 \begin {gather*} x \log \left (\frac {-15+e^{\frac {15}{-12+5 x}}+20 x}{-3+4 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 26, normalized size = 1.08 \begin {gather*} x \log \left (\frac {20 \, x + e^{\left (\frac {15}{5 \, x - 12}\right )} - 15}{4 \, x - 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 29, normalized size = 1.21 \begin {gather*} x \log \left (\frac {20 \, x + e^{\left (\frac {25 \, x}{4 \, {\left (5 \, x - 12\right )}} - \frac {5}{4}\right )} - 15}{4 \, x - 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.18, size = 66, normalized size = 2.75
method | result | size |
norman | \(\frac {-12 \ln \left (\frac {{\mathrm e}^{\frac {15}{5 x -12}}+20 x -15}{4 x -3}\right ) x +5 \ln \left (\frac {{\mathrm e}^{\frac {15}{5 x -12}}+20 x -15}{4 x -3}\right ) x^{2}}{5 x -12}\) | \(66\) |
risch | \(x \ln \left (\frac {{\mathrm e}^{\frac {15}{5 x -12}}}{20}+x -\frac {3}{4}\right )-x \ln \left (x -\frac {3}{4}\right )-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x -\frac {3}{4}}\right ) \mathrm {csgn}\left (i \left (\frac {{\mathrm e}^{\frac {15}{5 x -12}}}{20}+x -\frac {3}{4}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{\frac {15}{5 x -12}}}{20}+x -\frac {3}{4}\right )}{x -\frac {3}{4}}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x -\frac {3}{4}}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{\frac {15}{5 x -12}}}{20}+x -\frac {3}{4}\right )}{x -\frac {3}{4}}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (\frac {{\mathrm e}^{\frac {15}{5 x -12}}}{20}+x -\frac {3}{4}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{\frac {15}{5 x -12}}}{20}+x -\frac {3}{4}\right )}{x -\frac {3}{4}}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (\frac {{\mathrm e}^{\frac {15}{5 x -12}}}{20}+x -\frac {3}{4}\right )}{x -\frac {3}{4}}\right )^{3}}{2}+x \ln \relax (5)\) | \(209\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 28, normalized size = 1.17 \begin {gather*} x \log \left (20 \, x + e^{\left (\frac {15}{5 \, x - 12}\right )} - 15\right ) - x \log \left (4 \, x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.42, size = 26, normalized size = 1.08 \begin {gather*} x\,\ln \left (\frac {20\,x+{\mathrm {e}}^{\frac {15}{5\,x-12}}-15}{4\,x-3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.79, size = 20, normalized size = 0.83 \begin {gather*} x \log {\left (\frac {20 x + e^{\frac {15}{5 x - 12}} - 15}{4 x - 3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________