Optimal. Leaf size=33 \[ \log \left (\frac {1-x+\frac {x}{\log (x)}+\frac {3 x^2}{1+\log \left (\frac {3+x}{4}\right )}}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 28.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 x+x^2+\left (6 x+2 x^2\right ) \log \left (\frac {3+x}{4}\right )+\left (3 x+x^2\right ) \log ^2\left (\frac {3+x}{4}\right )+\log ^2(x) \left (3+x-9 x^2+\left (6+2 x-9 x^2-3 x^3\right ) \log \left (\frac {3+x}{4}\right )+(3+x) \log ^2\left (\frac {3+x}{4}\right )\right )}{\log (x) \left (-3 x^2-x^3+\left (-6 x^2-2 x^3\right ) \log \left (\frac {3+x}{4}\right )+\left (-3 x^2-x^3\right ) \log ^2\left (\frac {3+x}{4}\right )\right )+\log ^2(x) \left (-3 x+2 x^2-8 x^3-3 x^4+\left (-6 x+4 x^2-7 x^3-3 x^4\right ) \log \left (\frac {3+x}{4}\right )+\left (-3 x+2 x^2+x^3\right ) \log ^2\left (\frac {3+x}{4}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x (3+x) \left (1+\log \left (\frac {3+x}{4}\right )\right )^2+\log ^2(x) \left (-3-x+9 x^2+\left (-6-2 x+9 x^2+3 x^3\right ) \log \left (\frac {3+x}{4}\right )-(3+x) \log ^2\left (\frac {3+x}{4}\right )\right )}{x (3+x) \log (x) \left (1+\log \left (\frac {3+x}{4}\right )\right ) \left (x \left (1+\log \left (\frac {3+x}{4}\right )\right )+\log (x) \left (1-x+3 x^2-(-1+x) \log \left (\frac {3+x}{4}\right )\right )\right )} \, dx\\ &=\int \left (\frac {x+\log ^2(x)}{x \log (x) (-x-\log (x)+x \log (x))}-\frac {1}{(3+x) \left (1+\log \left (\frac {3+x}{4}\right )\right )}-\frac {3 x^2}{(-x-\log (x)+x \log (x)) \left (x+\log (x)-x \log (x)+3 x^2 \log (x)+x \log \left (\frac {3+x}{4}\right )+\log (x) \log \left (\frac {3+x}{4}\right )-x \log (x) \log \left (\frac {3+x}{4}\right )\right )}+\frac {-x^2-2 x \log (x)-7 x^2 \log (x)-3 x^3 \log (x)-\log ^2(x)-16 x \log ^2(x)+2 x^2 \log ^2(x)+3 x^3 \log ^2(x)}{(3+x) (-x-\log (x)+x \log (x)) \left (x+\log (x)-x \log (x)+3 x^2 \log (x)+x \log \left (\frac {3+x}{4}\right )+\log (x) \log \left (\frac {3+x}{4}\right )-x \log (x) \log \left (\frac {3+x}{4}\right )\right )}\right ) \, dx\\ &=-\left (3 \int \frac {x^2}{(-x-\log (x)+x \log (x)) \left (x+\log (x)-x \log (x)+3 x^2 \log (x)+x \log \left (\frac {3+x}{4}\right )+\log (x) \log \left (\frac {3+x}{4}\right )-x \log (x) \log \left (\frac {3+x}{4}\right )\right )} \, dx\right )+\int \frac {x+\log ^2(x)}{x \log (x) (-x-\log (x)+x \log (x))} \, dx-\int \frac {1}{(3+x) \left (1+\log \left (\frac {3+x}{4}\right )\right )} \, dx+\int \frac {-x^2-2 x \log (x)-7 x^2 \log (x)-3 x^3 \log (x)-\log ^2(x)-16 x \log ^2(x)+2 x^2 \log ^2(x)+3 x^3 \log ^2(x)}{(3+x) (-x-\log (x)+x \log (x)) \left (x+\log (x)-x \log (x)+3 x^2 \log (x)+x \log \left (\frac {3+x}{4}\right )+\log (x) \log \left (\frac {3+x}{4}\right )-x \log (x) \log \left (\frac {3+x}{4}\right )\right )} \, dx\\ &=-\left (3 \int \frac {x^2}{(-x-\log (x)+x \log (x)) \left (x+\log (x)-x \log (x)+3 x^2 \log (x)+x \log \left (\frac {3+x}{4}\right )+\log (x) \log \left (\frac {3+x}{4}\right )-x \log (x) \log \left (\frac {3+x}{4}\right )\right )} \, dx\right )+\int \left (\frac {1}{(-1+x) x}-\frac {1}{x \log (x)}+\frac {1}{(-1+x) (-x-\log (x)+x \log (x))}+\frac {-1+x}{x (-x-\log (x)+x \log (x))}\right ) \, dx+\int \frac {x^2+x \left (2+7 x+3 x^2\right ) \log (x)+\left (1+16 x-2 x^2-3 x^3\right ) \log ^2(x)}{(3+x) (x-(-1+x) \log (x)) \left (x \left (1+\log \left (\frac {3+x}{4}\right )\right )+\log (x) \left (1-x+3 x^2-(-1+x) \log \left (\frac {3+x}{4}\right )\right )\right )} \, dx-\operatorname {Subst}\left (\int \frac {1}{x \left (1+\log \left (\frac {x}{4}\right )\right )} \, dx,x,3+x\right )\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.87, size = 74, normalized size = 2.24 \begin {gather*} -\log (x)-\log (\log (x))-\log \left (1+\log \left (\frac {3+x}{4}\right )\right )+\log \left (x+\log (x)-x \log (x)+3 x^2 \log (x)+x \log \left (\frac {3+x}{4}\right )+\log (x) \log \left (\frac {3+x}{4}\right )-x \log (x) \log \left (\frac {3+x}{4}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 113, normalized size = 3.42 \begin {gather*} \log \left (x - 1\right ) - \log \relax (x) + \log \left (\frac {{\left (3 \, x^{2} - {\left (x - 1\right )} \log \left (\frac {1}{4} \, x + \frac {3}{4}\right ) - x + 1\right )} \log \relax (x) + x \log \left (\frac {1}{4} \, x + \frac {3}{4}\right ) + x}{3 \, x^{2} - {\left (x - 1\right )} \log \left (\frac {1}{4} \, x + \frac {3}{4}\right ) - x + 1}\right ) + \log \left (-\frac {3 \, x^{2} - {\left (x - 1\right )} \log \left (\frac {1}{4} \, x + \frac {3}{4}\right ) - x + 1}{x - 1}\right ) - \log \left (\log \left (\frac {1}{4} \, x + \frac {3}{4}\right ) + 1\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.93, size = 82, normalized size = 2.48 \begin {gather*} \log \left (3 \, x^{2} \log \relax (x) + 2 \, x \log \relax (2) \log \relax (x) - x \log \left (x + 3\right ) \log \relax (x) - 2 \, x \log \relax (2) + x \log \left (x + 3\right ) - x \log \relax (x) - 2 \, \log \relax (2) \log \relax (x) + \log \left (x + 3\right ) \log \relax (x) + x + \log \relax (x)\right ) - \log \relax (x) - \log \left (2 \, \log \relax (2) - \log \left (x + 3\right ) - 1\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 78, normalized size = 2.36
method | result | size |
risch | \(-\ln \relax (x )+\ln \left (x -1\right )-\ln \left (\ln \relax (x )\right )+\ln \left (\ln \relax (x )-\frac {x}{x -1}\right )+\ln \left (\ln \left (\frac {3}{4}+\frac {x}{4}\right )-\frac {3 x^{2} \ln \relax (x )-x \ln \relax (x )+x +\ln \relax (x )}{x \ln \relax (x )-x -\ln \relax (x )}\right )-\ln \left (1+\ln \left (\frac {3}{4}+\frac {x}{4}\right )\right )\) | \(78\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.71, size = 105, normalized size = 3.18 \begin {gather*} \log \left (x - 1\right ) - \log \relax (x) + \log \left (\frac {x {\left (2 \, \log \relax (2) - 1\right )} + {\left ({\left (x - 1\right )} \log \relax (x) - x\right )} \log \left (x + 3\right ) - {\left (3 \, x^{2} + x {\left (2 \, \log \relax (2) - 1\right )} - 2 \, \log \relax (2) + 1\right )} \log \relax (x)}{{\left (x - 1\right )} \log \relax (x) - x}\right ) + \log \left (\frac {{\left (x - 1\right )} \log \relax (x) - x}{x - 1}\right ) - \log \left (-2 \, \log \relax (2) + \log \left (x + 3\right ) + 1\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {3\,x+\ln \left (\frac {x}{4}+\frac {3}{4}\right )\,\left (2\,x^2+6\,x\right )+{\ln \left (\frac {x}{4}+\frac {3}{4}\right )}^2\,\left (x^2+3\,x\right )+{\ln \relax (x)}^2\,\left (x+{\ln \left (\frac {x}{4}+\frac {3}{4}\right )}^2\,\left (x+3\right )+\ln \left (\frac {x}{4}+\frac {3}{4}\right )\,\left (-3\,x^3-9\,x^2+2\,x+6\right )-9\,x^2+3\right )+x^2}{\left (3\,x-{\ln \left (\frac {x}{4}+\frac {3}{4}\right )}^2\,\left (x^3+2\,x^2-3\,x\right )-2\,x^2+8\,x^3+3\,x^4+\ln \left (\frac {x}{4}+\frac {3}{4}\right )\,\left (3\,x^4+7\,x^3-4\,x^2+6\,x\right )\right )\,{\ln \relax (x)}^2+\left (\ln \left (\frac {x}{4}+\frac {3}{4}\right )\,\left (2\,x^3+6\,x^2\right )+{\ln \left (\frac {x}{4}+\frac {3}{4}\right )}^2\,\left (x^3+3\,x^2\right )+3\,x^2+x^3\right )\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________