Optimal. Leaf size=27 \[ x+\frac {\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 2.00, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 20, number of rules used = 9, integrand size = 99, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1594, 27, 6688, 14, 6742, 2205, 2210, 2220, 2551} \begin {gather*} \frac {\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{x+6}}\right )}{x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 27
Rule 1594
Rule 2205
Rule 2210
Rule 2220
Rule 2551
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-2 x^2} \left (6 x-24 x^3-4 x^4+e^{2 x^2} \left (36 x^2+12 x^3+x^4\right )+e^{2 x^2} \left (-36-12 x-x^2\right ) \log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )\right )}{x^2 \left (36+12 x+x^2\right )} \, dx\\ &=\int \frac {e^{-2 x^2} \left (6 x-24 x^3-4 x^4+e^{2 x^2} \left (36 x^2+12 x^3+x^4\right )+e^{2 x^2} \left (-36-12 x-x^2\right ) \log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )\right )}{x^2 (6+x)^2} \, dx\\ &=\int \frac {\frac {e^{-2 x^2} x \left (6-24 x^2-4 x^3+e^{2 x^2} x (6+x)^2\right )}{(6+x)^2}-\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x^2} \, dx\\ &=\int \left (-\frac {2 e^{-2 x^2} \left (-3+12 x^2+2 x^3\right )}{x (6+x)^2}+\frac {x^2-\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-2 x^2} \left (-3+12 x^2+2 x^3\right )}{x (6+x)^2} \, dx\right )+\int \frac {x^2-\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x^2} \, dx\\ &=-\left (2 \int \left (2 e^{-2 x^2}-\frac {e^{-2 x^2}}{12 x}+\frac {e^{-2 x^2}}{2 (6+x)^2}-\frac {143 e^{-2 x^2}}{12 (6+x)}\right ) \, dx\right )+\int \left (1-\frac {\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x^2}\right ) \, dx\\ &=x+\frac {1}{6} \int \frac {e^{-2 x^2}}{x} \, dx-4 \int e^{-2 x^2} \, dx+\frac {143}{6} \int \frac {e^{-2 x^2}}{6+x} \, dx-\int \frac {e^{-2 x^2}}{(6+x)^2} \, dx-\int \frac {\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x^2} \, dx\\ &=x+\frac {e^{-2 x^2}}{6+x}-\sqrt {2 \pi } \text {erf}\left (\sqrt {2} x\right )+\frac {\text {Ei}\left (-2 x^2\right )}{12}+\frac {\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x}+4 \int e^{-2 x^2} \, dx+\frac {143}{6} \int \frac {e^{-2 x^2}}{6+x} \, dx-24 \int \frac {e^{-2 x^2}}{6+x} \, dx-\int \frac {e^{-2 x^2} \left (6-24 x^2-4 x^3\right )}{x (6+x)^2} \, dx\\ &=x+\frac {e^{-2 x^2}}{6+x}+\frac {\text {Ei}\left (-2 x^2\right )}{12}+\frac {\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x}+\frac {143}{6} \int \frac {e^{-2 x^2}}{6+x} \, dx-24 \int \frac {e^{-2 x^2}}{6+x} \, dx-\int \left (-4 e^{-2 x^2}+\frac {e^{-2 x^2}}{6 x}-\frac {e^{-2 x^2}}{(6+x)^2}+\frac {143 e^{-2 x^2}}{6 (6+x)}\right ) \, dx\\ &=x+\frac {e^{-2 x^2}}{6+x}+\frac {\text {Ei}\left (-2 x^2\right )}{12}+\frac {\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x}-\frac {1}{6} \int \frac {e^{-2 x^2}}{x} \, dx+4 \int e^{-2 x^2} \, dx-24 \int \frac {e^{-2 x^2}}{6+x} \, dx+\int \frac {e^{-2 x^2}}{(6+x)^2} \, dx\\ &=x+\sqrt {2 \pi } \text {erf}\left (\sqrt {2} x\right )+\frac {\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x}-4 \int e^{-2 x^2} \, dx\\ &=x+\frac {\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 27, normalized size = 1.00 \begin {gather*} x+\frac {\log \left (\frac {55}{4} e^{\frac {e^{-2 x^2} x}{6+x}}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 40, normalized size = 1.48 \begin {gather*} \frac {{\left ({\left (x^{3} + 6 \, x^{2} + {\left (x + 6\right )} \log \left (\frac {55}{4}\right )\right )} e^{\left (2 \, x^{2}\right )} + x\right )} e^{\left (-2 \, x^{2}\right )}}{x^{2} + 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 44, normalized size = 1.63 \begin {gather*} \frac {x^{3} + 6 \, x^{2} + x e^{\left (-2 \, x^{2}\right )} + x \log \left (55\right ) - 2 \, x \log \relax (2) + 6 \, \log \left (55\right ) - 12 \, \log \relax (2)}{x^{2} + 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 44, normalized size = 1.63
method | result | size |
risch | \(\frac {\ln \left ({\mathrm e}^{\frac {x \,{\mathrm e}^{-2 x^{2}}}{x +6}}\right )}{x}-\frac {-2 x^{2}+4 \ln \relax (2)-2 \ln \relax (5)-2 \ln \left (11\right )}{2 x}\) | \(44\) |
default | \(\frac {\left (x^{4} {\mathrm e}^{4 x^{2}}+x^{2} {\mathrm e}^{2 x^{2}}+\left (-432+12 \ln \left (\frac {55 \,{\mathrm e}^{\frac {x \,{\mathrm e}^{-2 x^{2}}}{x +6}}}{4}\right )-\frac {12 x \,{\mathrm e}^{-2 x^{2}}}{x +6}\right ) x \,{\mathrm e}^{4 x^{2}}+\left (-108+\ln \left (\frac {55 \,{\mathrm e}^{\frac {x \,{\mathrm e}^{-2 x^{2}}}{x +6}}}{4}\right )-\frac {x \,{\mathrm e}^{-2 x^{2}}}{x +6}\right ) x^{2} {\mathrm e}^{4 x^{2}}+36 \left (\ln \left (\frac {55 \,{\mathrm e}^{\frac {x \,{\mathrm e}^{-2 x^{2}}}{x +6}}}{4}\right )-\frac {x \,{\mathrm e}^{-2 x^{2}}}{x +6}\right ) {\mathrm e}^{4 x^{2}}+6 x \,{\mathrm e}^{2 x^{2}}\right ) {\mathrm e}^{-4 x^{2}}}{x \left (x +6\right )^{2}}\) | \(172\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 50, normalized size = 1.85 \begin {gather*} \frac {x^{3} + 6 \, x^{2} + x {\left (\log \left (11\right ) + \log \relax (5) - 2 \, \log \relax (2)\right )} + x e^{\left (-2 \, x^{2}\right )} + 6 \, \log \left (11\right ) + 6 \, \log \relax (5) - 12 \, \log \relax (2)}{x^{2} + 6 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.25, size = 34, normalized size = 1.26 \begin {gather*} x+\frac {1}{6\,{\mathrm {e}}^{2\,x^2}+x\,{\mathrm {e}}^{2\,x^2}}-\frac {2\,\ln \relax (2)}{x}+\frac {\ln \left (55\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 22, normalized size = 0.81 \begin {gather*} x + \frac {e^{- 2 x^{2}}}{x + 6} + \frac {- 2 \log {\relax (2 )} + \log {\left (55 \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________