Optimal. Leaf size=19 \[ 2-5 e^3+\log (x)-e^x (-1+x) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 17, normalized size of antiderivative = 0.89, number of steps used = 13, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {14, 6742, 2199, 2194, 2178, 2176, 2554} \begin {gather*} e^x \log (x)-e^x x \log (x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}-\frac {e^x \left (-1+x+x^2 \log (x)\right )}{x}\right ) \, dx\\ &=\log (x)-\int \frac {e^x \left (-1+x+x^2 \log (x)\right )}{x} \, dx\\ &=\log (x)-\int \left (\frac {e^x (-1+x)}{x}+e^x x \log (x)\right ) \, dx\\ &=\log (x)-\int \frac {e^x (-1+x)}{x} \, dx-\int e^x x \log (x) \, dx\\ &=\log (x)+e^x \log (x)-e^x x \log (x)-\int \left (e^x-\frac {e^x}{x}\right ) \, dx+\int \frac {e^x (-1+x)}{x} \, dx\\ &=\log (x)+e^x \log (x)-e^x x \log (x)-\int e^x \, dx+\int \left (e^x-\frac {e^x}{x}\right ) \, dx+\int \frac {e^x}{x} \, dx\\ &=-e^x+\text {Ei}(x)+\log (x)+e^x \log (x)-e^x x \log (x)+\int e^x \, dx-\int \frac {e^x}{x} \, dx\\ &=\log (x)+e^x \log (x)-e^x x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 13, normalized size = 0.68 \begin {gather*} \log (x)-e^x (-1+x) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 12, normalized size = 0.63 \begin {gather*} -{\left ({\left (x - 1\right )} e^{x} - 1\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 15, normalized size = 0.79 \begin {gather*} -x e^{x} \log \relax (x) + e^{x} \log \relax (x) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 13, normalized size = 0.68
method | result | size |
risch | \(-\left (x -1\right ) {\mathrm e}^{x} \ln \relax (x )+\ln \relax (x )\) | \(13\) |
default | \(\ln \relax (x )+{\mathrm e}^{x} \ln \relax (x )-x \,{\mathrm e}^{x} \ln \relax (x )\) | \(16\) |
norman | \(\ln \relax (x )+{\mathrm e}^{x} \ln \relax (x )-x \,{\mathrm e}^{x} \ln \relax (x )\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -{\left (x - 1\right )} e^{x} \log \relax (x) + {\rm Ei}\relax (x) - e^{x} + \int \frac {{\left (x - 1\right )} e^{x}}{x}\,{d x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.18, size = 12, normalized size = 0.63 \begin {gather*} \ln \relax (x)\,\left ({\mathrm {e}}^x-x\,{\mathrm {e}}^x+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 14, normalized size = 0.74 \begin {gather*} \left (- x \log {\relax (x )} + \log {\relax (x )}\right ) e^{x} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________