Optimal. Leaf size=21 \[ \frac {6}{\log (x) \left (1+\frac {2 x^2}{\log \left (x^2\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24 x^2 \log (x)+\left (-12 x^2-24 x^2 \log (x)\right ) \log \left (x^2\right )-6 \log ^2\left (x^2\right )}{4 x^5 \log ^2(x)+4 x^3 \log ^2(x) \log \left (x^2\right )+x \log ^2(x) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 \left (-4 x^2 \log (x) \left (-1+\log \left (x^2\right )\right )-\log \left (x^2\right ) \left (2 x^2+\log \left (x^2\right )\right )\right )}{x \log ^2(x) \left (2 x^2+\log \left (x^2\right )\right )^2} \, dx\\ &=6 \int \frac {-4 x^2 \log (x) \left (-1+\log \left (x^2\right )\right )-\log \left (x^2\right ) \left (2 x^2+\log \left (x^2\right )\right )}{x \log ^2(x) \left (2 x^2+\log \left (x^2\right )\right )^2} \, dx\\ &=6 \int \left (-\frac {1}{x \log ^2(x)}+\frac {4 x \left (1+2 x^2\right )}{\log (x) \left (2 x^2+\log \left (x^2\right )\right )^2}-\frac {2 x (-1+2 \log (x))}{\log ^2(x) \left (2 x^2+\log \left (x^2\right )\right )}\right ) \, dx\\ &=-\left (6 \int \frac {1}{x \log ^2(x)} \, dx\right )-12 \int \frac {x (-1+2 \log (x))}{\log ^2(x) \left (2 x^2+\log \left (x^2\right )\right )} \, dx+24 \int \frac {x \left (1+2 x^2\right )}{\log (x) \left (2 x^2+\log \left (x^2\right )\right )^2} \, dx\\ &=-\left (6 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )\right )-12 \int \left (-\frac {x}{\log ^2(x) \left (2 x^2+\log \left (x^2\right )\right )}+\frac {2 x}{\log (x) \left (2 x^2+\log \left (x^2\right )\right )}\right ) \, dx+24 \int \left (\frac {x}{\log (x) \left (2 x^2+\log \left (x^2\right )\right )^2}+\frac {2 x^3}{\log (x) \left (2 x^2+\log \left (x^2\right )\right )^2}\right ) \, dx\\ &=\frac {6}{\log (x)}+12 \int \frac {x}{\log ^2(x) \left (2 x^2+\log \left (x^2\right )\right )} \, dx+24 \int \frac {x}{\log (x) \left (2 x^2+\log \left (x^2\right )\right )^2} \, dx-24 \int \frac {x}{\log (x) \left (2 x^2+\log \left (x^2\right )\right )} \, dx+48 \int \frac {x^3}{\log (x) \left (2 x^2+\log \left (x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 23, normalized size = 1.10 \begin {gather*} \frac {6 \log \left (x^2\right )}{2 x^2 \log (x)+\log (x) \log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 10, normalized size = 0.48 \begin {gather*} \frac {6}{x^{2} + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 10, normalized size = 0.48 \begin {gather*} \frac {6}{x^{2} + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.17, size = 115, normalized size = 5.48
method | result | size |
risch | \(\frac {6 \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-12 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+6 \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+24 i \ln \relax (x )}{\left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i x^{2}+4 i \ln \relax (x )\right ) \ln \relax (x )}\) | \(115\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 10, normalized size = 0.48 \begin {gather*} \frac {6}{x^{2} + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.46, size = 164, normalized size = 7.81 \begin {gather*} \frac {6\,\ln \left (x^2\right )-12\,\ln \relax (x)+\frac {12\,\ln \relax (x)\,\left (x\,{\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )}^2+4\,x^3\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+8\,x^5\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+2\,x^3\,{\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )}^2+4\,x^5+8\,x^7\right )}{\left (\ln \left (x^2\right )-2\,\ln \relax (x)+2\,x^2\right )\,\left (2\,x^3\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+x\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)\right )+2\,x^3+4\,x^5\right )}}{2\,{\ln \relax (x)}^2+\ln \relax (x)\,\left (\ln \left (x^2\right )-2\,\ln \relax (x)+2\,x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 7, normalized size = 0.33 \begin {gather*} \frac {6}{x^{2} + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________