Optimal. Leaf size=25 \[ \frac {3 e^x (2+2 x) \left (\frac {1}{2}+\frac {2 \log (4)}{\log (x)}\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (-12-12 x) \log (4)+e^x \left (-12+12 x+12 x^2\right ) \log (4) \log (x)+e^x \left (-3+3 x+3 x^2\right ) \log ^2(x)}{x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3 e^x-\frac {3 e^x}{x^2}+\frac {3 e^x}{x}-\frac {12 e^x \log (4)}{x^2 \log ^2(x)}-\frac {12 e^x \log (4)}{x \log ^2(x)}+\frac {12 e^x \log (4)}{\log (x)}-\frac {12 e^x \log (4)}{x^2 \log (x)}+\frac {12 e^x \log (4)}{x \log (x)}\right ) \, dx\\ &=3 \int e^x \, dx-3 \int \frac {e^x}{x^2} \, dx+3 \int \frac {e^x}{x} \, dx-(12 \log (4)) \int \frac {e^x}{x^2 \log ^2(x)} \, dx-(12 \log (4)) \int \frac {e^x}{x \log ^2(x)} \, dx+(12 \log (4)) \int \frac {e^x}{\log (x)} \, dx-(12 \log (4)) \int \frac {e^x}{x^2 \log (x)} \, dx+(12 \log (4)) \int \frac {e^x}{x \log (x)} \, dx\\ &=3 e^x+\frac {3 e^x}{x}+3 \text {Ei}(x)-3 \int \frac {e^x}{x} \, dx-(12 \log (4)) \int \frac {e^x}{x^2 \log ^2(x)} \, dx-(12 \log (4)) \int \frac {e^x}{x \log ^2(x)} \, dx+(12 \log (4)) \int \frac {e^x}{\log (x)} \, dx-(12 \log (4)) \int \frac {e^x}{x^2 \log (x)} \, dx+(12 \log (4)) \int \frac {e^x}{x \log (x)} \, dx\\ &=3 e^x+\frac {3 e^x}{x}-(12 \log (4)) \int \frac {e^x}{x^2 \log ^2(x)} \, dx-(12 \log (4)) \int \frac {e^x}{x \log ^2(x)} \, dx+(12 \log (4)) \int \frac {e^x}{\log (x)} \, dx-(12 \log (4)) \int \frac {e^x}{x^2 \log (x)} \, dx+(12 \log (4)) \int \frac {e^x}{x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 19, normalized size = 0.76 \begin {gather*} \frac {3 e^x (1+x) \log (256 x)}{x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 27, normalized size = 1.08 \begin {gather*} \frac {3 \, {\left (8 \, {\left (x + 1\right )} e^{x} \log \relax (2) + {\left (x + 1\right )} e^{x} \log \relax (x)\right )}}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 34, normalized size = 1.36 \begin {gather*} \frac {3 \, {\left (8 \, x e^{x} \log \relax (2) + x e^{x} \log \relax (x) + 8 \, e^{x} \log \relax (2) + e^{x} \log \relax (x)\right )}}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 1.12
method | result | size |
risch | \(\frac {3 \left (x +1\right ) {\mathrm e}^{x}}{x}+\frac {24 \ln \relax (2) {\mathrm e}^{x} \left (x +1\right )}{x \ln \relax (x )}\) | \(28\) |
norman | \(\frac {24 \,{\mathrm e}^{x} \ln \relax (2)+3 \,{\mathrm e}^{x} \ln \relax (x )+3 x \,{\mathrm e}^{x} \ln \relax (x )+24 x \ln \relax (2) {\mathrm e}^{x}}{x \ln \relax (x )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.70, size = 34, normalized size = 1.36 \begin {gather*} \frac {24 \, {\left (x \log \relax (2) + \log \relax (2)\right )} e^{x}}{x \log \relax (x)} + 3 \, {\rm Ei}\relax (x) + 3 \, e^{x} - 3 \, \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.28, size = 35, normalized size = 1.40 \begin {gather*} 3\,{\mathrm {e}}^x+\frac {3\,{\mathrm {e}}^x}{x}+\frac {24\,{\mathrm {e}}^x\,\ln \relax (2)}{\ln \relax (x)}+\frac {24\,{\mathrm {e}}^x\,\ln \relax (2)}{x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 31, normalized size = 1.24 \begin {gather*} \frac {\left (3 x \log {\relax (x )} + 24 x \log {\relax (2 )} + 3 \log {\relax (x )} + 24 \log {\relax (2 )}\right ) e^{x}}{x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________